391 research outputs found

    A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni

    Get PDF
    The neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S. mansoni, which we have named SmGAR. A bioinformatics analysis indicated that SmGAR belongs to a clade of invertebrate GAR-like receptors and is related to vertebrate muscarinic acetylcholine receptors. Functional expression studies in yeast showed that SmGAR is constitutively active but can be further activated by acetylcholine and, to a lesser extent, the cholinergic agonist, carbachol. Anti-cholinergic drugs, atropine and promethazine, were found to have inverse agonist activity towards SmGAR, causing a significant decrease in the receptor’s basal activity. An RNAi phenotypic assay revealed that suppression of SmGAR activity in early-stage larval schistosomulae leads to a drastic reduction in larval motility. In sum, our results provide the first molecular evidence that cholinergic GAR -like receptors are present in schistosomes and are required for proper motor control in the larvae. The results further identify SmGAR as a possible candidate for antiparasitic drug targeting

    Intestinal Enterobacteriaceae that Protect Nematodes from the Effects of Benzimidazoles

    Get PDF
    The objective of this study was to investigate an interaction between nematodes and gut Enterobacteriaceae that use benzimidazoles as a carbon source. By addressing this objective, we identified an anthelmintic resistance-like mechanism for gastrointestinal nematodes. We isolated 30 gut bacteria (family Enterobacteriaceae) that subsist on and putatively catabolize benzimidazole-class anthelmintics. C. elegans was protected from the effects of benzimidazoles when co-incubated with these Enterobacteriaceae that also protect adult ascarids from the effects of albendazole. This bacterial phenotype represents a novel mechanism by which gastrointestinal nematodes are potentially spared from the effects of benzimidazoles, without any apparent fitness cost to the parasite

    Functional analysis of Girardia tigrina transcriptome seeds pipeline for anthelmintic target discovery

    Get PDF
    Background Neglected diseases caused by helminth infections impose a massive hindrance to progress in the developing world. While basic research on parasitic flatworms (platyhelminths) continues to expand, researchers have yet to broadly adopt a free-living model to complement the study of these important parasites. Methods We report the high-coverage sequencing (RNA-Seq) and assembly of the transcriptome of the planarian Girardia tigrina across a set of dynamic conditions. The assembly was annotated and extensive orthology analysis was used to seed a pipeline for the rational prioritization and validation of putative anthelmintic targets. A small number of targets conserved between parasitic and free-living flatworms were comparatively interrogated. Results 240 million paired-end reads were assembled de novo to produce a strictly filtered predicted proteome consisting of over 22,000 proteins. Gene Ontology annotations were extended to 16,467 proteins. 2,693 sequences were identified in orthology groups spanning flukes, tapeworms and planaria, with 441 highlighted as belonging to druggable protein families. Chemical inhibitors were used on three targets in pharmacological screens using both planaria and schistosomula, revealing distinct motility phenotypes that were shown to correlate with planarian RNAi phenotypes. Conclusions This work provides the first comprehensive and annotated sequence resource for the model planarian G. tigrina, alongside a prioritized list of candidate drug targets conserved among parasitic and free-living flatworms. As proof of principle, we show that a simple RNAi and pharmacology pipeline in the more convenient planarian model system can inform parasite biology and serve as an efficient screening tool for the identification of lucrative anthelmintic targets

    Somatostatin Receptors Signal through EFA6A-ARF6 to Activate Phospholipase D in Clonal β-Cells

    Get PDF
    Somatostatin (SS) is a peptide hormone that inhibits insulin secretion in β-cells by activating its Gi/o-coupled receptors. Our previous work indicated that a βγ-dimer of Gi/o coupled to SS receptors can activate phospholipase D1 (PLD1) (Cheng, H., Grodnitzky, J. A., Yibchok-anun, S., Ding, J., and Hsu, W. H. (2005) Mol. Pharmacol. 67, 2162–2172). The aim of the present study was to elucidate the mechanisms underlying SS-induced PLD activation. We demonstrated the presence of ADP-ribosylation factor Arf1 and Arf6 in clonal β-cells, HIT-T15. We also determined that the activation of PLD1 was mediated through Arf6. Overexpression of dominant-negative (dn) Arf6 mutant, Arf6(T27N), and suppression of mRNA levels using siRNA, both abolished SS-induced PLD activation, while overexpression of wild type Arf6 further enhanced this PLD activation. In contrast, overexpression of dn-Arf1 mutant Arf1(T31N) or dn-Arf5 mutant Arf5(T31N) failed to reduce SS-induced PLD activation. These findings suggested that Arf6, but not Arf1 or Arf5, mediates the effect of SS. We further determined the involvement of the Arf6 guanine nucleotide exchange factor (GEF) EFA6A, a GEF previously thought to be found predominantly in the brain, in the activation of PLD1 in HIT-T15 cells. Using Northern and Western blot analyses, both mRNA and protein of EFA6A were found in these cells. Overexpression of dn-EFA6A mutant, EFA6A(E242K), and suppression of mRNA levels using siRNA, both abolished SS-induced PLD activation, whereas overexpression of dn-EFA6B mutant, EFA6B(E651K), failed to reduce SS-induced PLD activation. In addition, overexpression of dn-ARNO mutant, ARNO(E156K), another GEF of Arf6, had no effect on SS-induced activation of PLD. Taken together, these results suggest that SS signals through EFA6A to activate Arf6-PLD cascade

    Application of Alternative Nucleic Acid Extraction Protocols to ProGastro SSCS Assay for Detection of Bacterial Enteric Pathogens

    Get PDF
    As an alternative to automated extraction, fecal specimens were processed by investigational lysis/heating (i.e., manual) and by chromatography/centrifugation (i.e., column) methods. ProGastro SSC and Shiga toxin-producing Escherichia coli (i.e., STEC) indeterminate rates for 101 specimens were 1.0% to 3.0% for automated, 11.9% for manual, and 24.8% to 37.6% for column methods. Following freeze-thaw of 247 specimens, indeterminate rates were 1.6% to 2.4% for manual and 0.8 to 5.3% for column methods. Mean processing times for manual and column methods were 30.5 and 69.2 min, respectively. Concordance of investigational methods with automated extraction was ≥98.8%

    Novel RNAi-Mediated Approach to G Protein-Coupled Receptor Deorphanization: Proof of Principle and Characterization of a Planarian 5-HT Receptor

    Get PDF
    G protein-coupled receptors (GPCRs) represent the largest known superfamily of membrane proteins extending throughout the Metazoa. There exists ample motivation to elucidate the functional properties of GPCRs given their role in signal transduction and their prominence as drug targets. In many target organisms, these efforts are hampered by the unreliable nature of heterologous receptor expression platforms. We validate and describe an alternative loss-of-function approach for ascertaining the ligand and G protein coupling properties of GPCRs in their native cell membrane environment. Our efforts are focused on the phylum Platyhelminthes, given the heavy health burden exacted by pathogenic flatworms, as well as the role of free-living flatworms as model organisms for the study of developmental biology. RNA interference (RNAi) was used in conjunction with a biochemical endpoint assay to monitor cAMP modulation in response to the translational suppression of individual receptors. As proof of principle, this approach was used to confirm the neuropeptide GYIRFamide as the cognate ligand for the planarian neuropeptide receptor GtNPR-1, while revealing its endogenous coupling to Gαi/o. The method was then extended to deorphanize a novel Gαs-coupled planarian serotonin receptor, DtSER-1. A bioinformatics protocol guided the selection of receptor candidates mediating 5-HT-evoked responses. These results provide functional data on a neurotransmitter central to flatworm biology, while establishing the great potential of an RNAi-based deorphanization protocol. Future work can help optimize and adapt this protocol for higher-throughput platforms as well as other phyla

    Applying Stock Market Image Theory in China: Antecedents, Dimensions, and Consequences in the Middle Kingdom

    Get PDF
    This empirical study explores Chinese Mainland investors’ stock market image, as well as its antecedents and consequences. Stock market image theory, proposed by Dobni and Racine (2015, 2016), argues that personality, cognitive, and demographic variables impact investors’ image of the stock market, consequently impacting their investing motives and behaviors. This study asks the question: What factors influence Chinese investors’ image of the stock market? This quantitative study, based on surveys of 171 respondents, finds a strong relationship between Chinese investors’ inclinations to invest and to save for retirement and their perception of the stock market’s wealth-creating capacity

    Release of Small RNA-containing Exosome-like Vesicles from the Human Filarial Parasite Brugia malayi

    Get PDF
    Lymphatic filariasis (LF) is a socio-economically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30–120 nm) secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesicles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive vesicles could seed new therapeutic strategies and unearth stage-specific diagnostic biomarkers

    Identification of an Ascaris G protein-coupled acetylcholine receptor with atypical muscarinic pharmacology

    Get PDF
    Acetylcholine (ACh) is a neurotransmitter/neuromodulator in the nematode nervous system and induces its effects through interaction with both ligand-gated ion channels (LGICs) and G protein-coupled receptors (GPCRs). The structure, pharmacology and physiological importance of LGICs have been appreciably elucidated in model nematodes, including parasitic species where they are targets for anthelmintic drugs. Significantly less, however, is understood about nematode ACh GPCRs, termed GARs (G protein-linked ACh receptors). What is known comes from the free-livingCaenorhabditis elegans as no GARs have been characterized from parasitic species. Here we clone a putative GAR from the pig gastrointestinal nematode Ascaris suum with high structural homology to the C. elegans receptor GAR-1. Our GPCR, dubbed AsGAR-1, is alternatively spliced and expressed in the head and tail of adult worms but not in dorsal or ventral body wall muscle, or the ovijector. ACh activated AsGAR-1 in a concentration-dependent manner but the receptor was not activated by other small neurotransmitters. The classical muscarinic agonists carbachol, arecoline, oxotremorine M and bethanechol were also AsGAR-1 agonists but pilocarpine was ineffective. AsGAR-1 activation by ACh was partially antagonized by the muscarinic blocker atropine but pirenzepine and scopolamine were largely ineffective. Certain biogenic amine GPCR antagonists were also found to block AsGAR-1. Our conclusion is that Ascaris possesses G protein-coupled ACh receptors that are homologous in structure to those present in C. elegans, and that although they have some sequence homology to vertebrate muscarinic receptors, their pharmacology is atypically muscarinic
    • …
    corecore