179,745 research outputs found
New q-Euler numbers and polynomials associated with p-adic q-integrals
In this paper we study q-Euler numbers and polynomials by using p-adic
q-fermionic integrals on Z_p. The methods to study q-Euler numbers and
polynomials in this paper are new.Comment: 13 page
New identities involving q-Euler polynomials of higher order
In this paper we give new identities involving q-Euler polynomials of higher
order.Comment: 11 page
A note on the values of the weighted q-Bernstein polynomials and modified q-Genocchi numbers with weight alpha and beta via the p-adic q-integral on Zp
The rapid development of q-calculus has led to the discovery of new
generalizations of Bernstein polynomials and Genocchi polynomials involving
q-integers. The present paper deals with weighted q-Bernstein polynomials and
q-Genocchi numbers with weight alpha and beta. We apply the method of
generating function and p-adic q-integral representation on Zp, which are
exploited to derive further classes of Bernstein polynomials and q-Genocchi
numbers and polynomials. To be more precise we summarize our results as
follows, we obtain some combinatorial relations between q-Genocchi numbers and
polynomials with weight alpha and beta. Furthermore, we derive an integral
representation of weighted q-Bernstein polynomials of degree n on Zp. Also we
deduce a fermionic p-adic q-integral representation of product weighted
q-Bernstein polynomials of different degrees n1,n2,...on Zp and show that it
can be written with q-Genocchi numbers with weight alpha and beta which yields
a deeper insight into the effectiveness of this type of generalizations. Our
new generating function possess a number of interesting properties which we
state in this paper.Comment: 10 page
Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors
We investigated domain nucleation process in epitaxial Pb(Zr,Ti)O3 capacitors
under a modified piezoresponse force microscope. We obtained domain evolution
images during polarization switching process and observed that domain
nucleation occurs at particular sites. This inhomogeneous nucleation process
should play an important role in an early stage of switching and under a high
electric field. We found that the number of nuclei is linearly proportional to
log(switching time), suggesting a broad distribution of activation energies for
nucleation. The nucleation sites for a positive bias differ from those for a
negative bias, indicating that most nucleation sites are located at
ferroelectric/electrode interfaces
- …