97,446 research outputs found

    Generalized BFT Formalism of Electroweak Theory in the Unitary Gauge

    Full text link
    We systematically embed the SU(2)×\timesU(1) Higgs model in the unitary gauge into a fully gauge-invariant theory by following the generalized BFT formalism. We also suggest a novel path to get a first-class Lagrangian directly from the original second-class one using the BFT fields.Comment: 14 pages, Latex, no figure

    The quantization of the chiral Schwinger model based on the BFT-BFV formalism II

    Get PDF
    We apply an improved version of Batalin-Fradkin-Tyutin (BFT) Hamiltonian method to the a=1 chiral Schwinger Model, which is much more nontrivial than the a>1.one.Furthermore,throughthepathintegralquantization,wenewlyresolvetheproblemofthenontrivial one. Furthermore, through the path integral quantization, we newly resolve the problem of the non-trivial \deltafunctionaswellasthatoftheunwantedFourierparameter function as well as that of the unwanted Fourier parameter \xi$ in the measure. As a result, we explicitly obtain the fully gauge invariant partition function, which includes a new type of Wess-Zumino (WZ) term irrelevant to the gauge symmetry as well as usual WZ action.Comment: 17 pages, To be published in J. Phys.

    Electronic structures of layered perovskite Sr2MO4 (M=Ru, Rh, and Ir)

    Full text link
    We investigated the electronic structures of the two-dimensional layered perovskite Sr2_{2}\textit{M}O4_{4} (\textit{M}=4\textit{d} Ru, 4\textit{d} Rh, and 5\textit{d} Ir) using optical spectroscopy and polarization-dependent O 1\textit{s} x-ray absorption spectroscopy. While the ground states of the series of compounds are rather different, their optical conductivity spectra σ(ω)\sigma(\omega) exhibit similar interband transitions, indicative of the common electronic structures of the 4\textit{d} and 5\textit{d} layered oxides. The energy splittings between the two ege_{g} orbitals, i.e.i.e., d3z2r2d_{3z^{2}-r^{2}} and dx2y2d_{x^{2}-y^{2}}, are about 2 eV, which is much larger than those in the pseudocubic and 3\textit{d} layered perovskite oxides. The electronic properties of the Sr2_{2}\textit{M}O4_{4} compounds are discussed in terms of the crystal structure and the extended character of the 4\textit{d} and 5\textit{d} orbitals

    Dielectric constants of Ir, Ru, Pt, and IrO2: Contributions from bound charges

    Full text link
    We investigated the dielectric functions ϵ\epsilon(ω\omega) of Ir, Ru, Pt, and IrO2_2, which are commonly used as electrodes in ferroelectric thin film applications. In particular, we investigated the contributions from bound charges ϵb\epsilon^{b}(ω\omega), since these are important scientifically as well as technologically: the ϵ1b\epsilon_1^{b}(0) of a metal electrode is one of the major factors determining the depolarization field inside a ferroelectric capacitor. To obtain ϵ1b\epsilon_1^{b}(0), we measured reflectivity spectra of sputtered Pt, Ir, Ru, and IrO2 films in a wide photon energy range between 3.7 meV and 20 eV. We used a Kramers-Kronig transformation to obtain real and imaginary dielectric functions, and then used Drude-Lorentz oscillator fittings to extract ϵ1b\epsilon_1^{b}(0) values. Ir, Ru, Pt, and IrO2_2 produced experimental ϵ1b\epsilon_1^{b}(0) values of 48±\pm10, 82±\pm10, 58±\pm10, and 29±\pm5, respectively, which are in good agreement with values obtained using first-principles calculations. These values are much higher than those for noble metals such as Cu, Ag, and Au because transition metals and IrO2_2 have such strong d-d transitions below 2.0 eV. High ϵ1b\epsilon_1^{b}(0) values will reduce the depolarization field in ferroelectric capacitors, making these materials good candidates for use as electrodes in ferroelectric applications.Comment: 26 pages, 6 figures, 2 table

    Electron Spin Relaxation under Drift in GaAs

    Full text link
    Based on a Monte Carlo method, we investigate the influence of transport conditions on the electron spin relaxation in GaAs. The decay of initial electron spin polarization is calculated as a function of distance under the presence of moderate drift fields and/or non-zero injection energies. For relatively low fields (a couple of kV/cm), a substantial amount of spin polarization is preserved for several microns at 300 K. However, it is also found that the spin relaxation rate increases rapidly with the drift field, scaling as the square of the electron wavevector in the direction of the field. When the electrons are injected with a high energy, a pronounced decrease is observed in the spin relaxation length due to an initial increase in the spin precession frequency. Hence, high-field or high-energy transport conditions may not be desirable for spin-based devices.Comment: 4 pages, 3 figures, one table. Scheduled for publication in the May 26, 2003 issue of Applied Physics Letters (039321APL
    corecore