15,040 research outputs found
Heisenberg-picture approach to the exact quantum motion of a time-dependent forced harmonic oscillator
In the Heisenberg picture, the generalized invariant and exact quantum
motions are found for a time-dependent forced harmonic oscillator. We find the
eigenstate and the coherent state of the invariant and show that the
dispersions of these quantum states do not depend on the external force. Our
formalism is applied to several interesting cases.Comment: 15 pages, two eps files, to appear in Phys. Rev. A 53 (6) (1996
Perturbative Analysis of Nonabelian Aharonov-Bohm Scattering
We perform a perturbative analysis of the nonabelian Aharonov-Bohm problem to
one loop in a field theoretic framework, and show the necessity of contact
interactions for renormalizability of perturbation theory. Moreover at critical
values of the contact interaction strength the theory is finite and preserves
classical conformal invariance.Comment: 12 pages in LaTeX, uses epsf.sty, 5 uuencoded Postscript figures sent
separately. MIT-CTP-228
Four electrons in a two-leg Hubbard ladder: exact ground states
In the case of a two-leg Hubbard ladder we present a procedure which allows
the exact deduction of the ground state for the four particle problem in
arbitrary large lattice system, in a tractable manner, which involves only a
reduced Hilbert space region containing the ground state. In the presented
case, the method leads to nine analytic, linear, and coupled equations
providing the ground state. The procedure which is applicable to few particle
problems and other systems as well is based on an r-space representation of the
wave functions and construction of symmetry adapted orthogonal basis wave
vectors describing the Hilbert space region containing the ground state. Once
the ground state is deduced, a complete quantum mechanical characterization of
the studied state can be given. Since the analytic structure of the ground
state becomes visible during the use of the method, its importance is not
reduced only to the understanding of theoretical aspects connected to exact
descriptions or potential numerical approximation scheme developments, but is
relevant as well for a large number of potential technological application
possibilities placed between nano-devices and quantum calculations, where the
few particle behavior and deep understanding are important key aspects to know.Comment: 19 pages, 5 figure
Speed and Accuracy of Static Image Discrimination by Rats
When discriminating dynamic noisy sensory signals, human and primate subjects
achieve higher accuracy when they take more time to decide, an effect
attributed to accumulation of evidence over time to overcome neural noise. We
measured the speed and accuracy of twelve freely behaving rats discriminating
static, high contrast photographs of real-world objects for water reward in a
self-paced task. Response latency was longer in correct trials compared to
error trials. Discrimination accuracy increased with response latency over the
range of 500-1200ms. We used morphs between previously learned images to vary
the image similarity parametrically, and thereby modulate task difficulty from
ceiling to chance. Over this range we find that rats take more time before
responding in trials with more similar stimuli. We conclude that rats'
perceptual decisions improve with time even in the absence of temporal
information in the stimulus, and that rats modulate speed in response to
discrimination difficulty to balance speed and accuracy
3SAT on an All-to-All-Connected CMOS Ising Solver Chip
This work solves 3SAT, a classical NP-complete problem, on a CMOS-based Ising
hardware chip with all-to-all connectivity. The paper addresses practical
issues in going from algorithms to hardware. It considers several degrees of
freedom in mapping the 3SAT problem to the chip - using multiple Ising
formulations for 3SAT; exploring multiple strategies for decomposing large
problems into subproblems that can be accommodated on the Ising chip; and
executing a sequence of these subproblems on CMOS hardware to obtain the
solution to the larger problem. These are evaluated within a software
framework, and the results are used to identify the most promising formulations
and decomposition techniques. These best approaches are then mapped to the
all-to-all hardware, and the performance of 3SAT is evaluated on the chip.
Experimental data shows that the deployed decomposition and mapping strategies
impact SAT solution quality: without our methods, the CMOS hardware cannot
achieve 3SAT solutions on SATLIB benchmarks
Fractal Profit Landscape of the Stock Market
We investigate the structure of the profit landscape obtained from the most
basic, fluctuation based, trading strategy applied for the daily stock price
data. The strategy is parameterized by only two variables, p and q. Stocks are
sold and bought if the log return is bigger than p and less than -q,
respectively. Repetition of this simple strategy for a long time gives the
profit defined in the underlying two-dimensional parameter space of p and q. It
is revealed that the local maxima in the profit landscape are spread in the
form of a fractal structure. The fractal structure implies that successful
strategies are not localized to any region of the profit landscape and are
neither spaced evenly throughout the profit landscape, which makes the
optimization notoriously hard and hypersensitive for partial or limited
information. The concrete implication of this property is demonstrated by
showing that optimization of one stock for future values or other stocks
renders worse profit than a strategy that ignores fluctuations, i.e., a
long-term buy-and-hold strategy.Comment: 12 pages, 4 figure
Comparison of model predictions of typhoid conjugate vaccine public health impact and cost-effectiveness
Models are useful to inform policy decisions on typhoid conjugate vaccine (TCV) deployment in endemic settings. However, methodological choices can influence model-predicted outcomes. To provide robust estimates for the potential public health impact of TCVs that account for structural model differences, we compared four dynamic and one static mathematical model of typhoid transmission and vaccine impact. All models were fitted to a common dataset of age-specific typhoid fever cases in Kolkata, India. We evaluated three TCV strategies: no vaccination, routine vaccination at 9 months of age, and routine vaccination at 9 months with a one-time catch-up campaign (ages 9 months to 15 years). The primary outcome was the predicted percent reduction in symptomatic typhoid cases over 10 years after vaccine introduction. For three models with economic analyses (Models A-C), we also compared the incremental cost-effectiveness ratios (ICERs), calculated as the incremental cost (US95-789 per DALY averted; two models predicted the ICER of routine vaccination alone to be greater than with the addition of catch-up campaign. Despite differences in model-predicted vaccine impact and cost-effectiveness, routine vaccination plus a catch-up campaign is likely to be impactful and cost-effective in high incidence settings such as Kolkata
Evidence for phonon skew scattering in the spin Hall effect of platinum
\u3cp\u3eWe measure and analyze the effective spin Hall angle of platinum in the low-residual resistivity regime by second-harmonic measurements of the spin-orbit torques for a multilayer of Pt|Co|AlOx. An angular-dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly nonmonotonic and reproducible temperature dependence of the torques. This behavior is compatible with recent theoretical predictions which include both intrinsic and extrinsic (impurities and phonons) contributions to the spin Hall effect at finite temperatures.\u3c/p\u3
- âŠ