20,521 research outputs found

    Myocardial Architecture and Patient Variability in Clinical Patterns of Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF) increases the risk of stroke by a factor of four to five and is the most common abnormal heart rhythm. The progression of AF with age, from short self-terminating episodes to persistence, varies between individuals and is poorly understood. An inability to understand and predict variation in AF progression has resulted in less patient-specific therapy. Likewise, it has been a challenge to relate the microstructural features of heart muscle tissue (myocardial architecture) with the emergent temporal clinical patterns of AF. We use a simple model of activation wavefront propagation on an anisotropic structure, mimicking heart muscle tissue, to show how variation in AF behaviour arises naturally from microstructural differences between individuals. We show that the stochastic nature of progressive transversal uncoupling of muscle strands (e.g., due to fibrosis or gap junctional remodelling), as occurs with age, results in variability in AF episode onset time, frequency, duration, burden and progression between individuals. This is consistent with clinical observations. The uncoupling of muscle strands can cause critical architectural patterns in the myocardium. These critical patterns anchor micro-re-entrant wavefronts and thereby trigger AF. It is the number of local critical patterns of uncoupling as opposed to global uncoupling that determines AF progression. This insight may eventually lead to patient specific therapy when it becomes possible to observe the cellular structure of a patient's heart.Comment: 5 pages, 4 figures. For supplementary materials please contact Kishan A. Manani at [email protected]

    Astrophysicists on Twitter: An in-depth analysis of tweeting and scientific publication behavior

    Get PDF
    This paper analyzes the tweeting behavior of 37 astrophysicists on Twitter and compares their tweeting behavior with their publication behavior and citation impact to show whether they tweet research-related topics or not. Astrophysicists on Twitter are selected to compare their tweets with their publications from Web of Science. Different user groups are identified based on tweeting and publication frequency. A moderate negative correlation (p=-0.390*) is found between the number of publications and tweets per day, while retweet and citation rates do not correlate. The similarity between tweets and abstracts is very low (cos=0.081). User groups show different tweeting behavior such as retweeting and including hashtags, usernames and URLs. The study is limited in terms of the small set of astrophysicists. Results are not necessarily representative of the entire astrophysicist community on Twitter and they most certainly do not apply to scientists in general. Future research should apply the methods to a larger set of researchers and other scientific disciplines. To a certain extent, this study helps to understand how researchers use Twitter. The results hint at the fact that impact on Twitter can neither be equated with nor replace traditional research impact metrics. However, tweets and other so-called altmetrics might be able to reflect other impact of scientists such as public outreach and science communication. To the best of our knowledge, this is the first in-depth study comparing researchers' tweeting activity and behavior with scientific publication output in terms of quantity, content and impact.Comment: 14 pages, 5 figures, 7 table

    The Interplay of Magnetic Fields, Fragmentation and Ionization Feedback in High-Mass Star Formation

    Full text link
    Massive stars disproportionately influence their surroundings. How they form has only started to become clear recently through radiation gas dynamical simulations. However, until now, no simulation has simultaneously included both magnetic fields and ionizing radiation. Here we present the results from the first radiation-magnetohydrodynamical (RMHD) simulation including ionization feedback, comparing an RMHD model of a 1000 M_sol rotating cloud to earlier radiation gas dynamical models with the same initial density and velocity distributions. We find that despite starting with a strongly supercritical mass to flux ratio, the magnetic field has three effects. First, the field offers locally support against gravitational collapse in the accretion flow, substantially reducing the amount of secondary fragmentation in comparison to the gas dynamical case. Second, the field drains angular momentum from the collapsing gas, further increasing the amount of material available for accretion by the central, massive, protostar, and thus increasing its final mass by about 50% from the purely gas dynamical case. Third, the field is wound up by the rotation of the flow, driving a tower flow. However, this flow never achieves the strength seen in low-mass star formation simulations for two reasons: gravitational fragmentation disrupts the circular flow in the central regions where the protostars form, and the expanding H II regions tend to further disrupt the field geometry. Therefore, outflows driven by ionization heating look likely to be more dynamically important in regions of massive star formation.Comment: ApJ in pres

    Symmetric box-splines on root lattices

    Get PDF
    AbstractRoot lattices are efficient sampling lattices for reconstructing isotropic signals in arbitrary dimensions, due to their highly symmetric structure. One root lattice, the Cartesian grid, is almost exclusively used since it matches the coordinate grid; but it is less efficient than other root lattices. Box-splines, on the other hand, generalize tensor-product B-splines by allowing non-Cartesian directions. They provide, in any number of dimensions, higher-order reconstructions of fields, often of higher efficiency than tensored B-splines. But on non-Cartesian lattices, such as the BCC (Body-Centered Cubic) or the FCC (Face-Centered Cubic) lattice, only some box-splines and then only up to dimension three have been investigated.This paper derives and completely characterizes efficient symmetric box-spline reconstruction filters on all irreducible root lattices that exist in any number of dimensions n≥2 (n≥3 for Dn and Dn∗ lattices). In all cases, box-splines are constructed by convolution using the lattice directions, generalizing the known constructions in two and three variables. For each box-spline, we document the basic properties for computational use: the polynomial degree, the continuity, the linear independence of shifts on the lattice and optimal quasi-interpolants for fast approximation of fields

    A Practical Box Spline Compendium

    Full text link
    Box splines provide smooth spline spaces as shifts of a single generating function on a lattice and so generalize tensor-product splines. Their elegant theory is laid out in classical papers and a summarizing book. This compendium aims to succinctly but exhaustively survey symmetric low-degree box splines with special focus on two and three variables. Tables contrast the lattices, supports, analytic and reconstruction properties, and list available implementations and code.Comment: 15 pages, 10 figures, 8 table

    Avalanche Behavior in an Absorbing State Oslo Model

    Full text link
    Self-organized criticality can be translated into the language of absorbing state phase transitions. Most models for which this analogy is established have been investigated for their absorbing state characteristics. In this article, we transform the self-organized critical Oslo model into an absorbing state Oslo model and analyze the avalanche behavior. We find that the resulting gap exponent, D, is consistent with its value in the self-organized critical model. For the avalanche size exponent, \tau, an analysis of the effect of the external drive and the boundary conditions is required.Comment: 4 pages, 2 figures, REVTeX 4, submitted to PRE Brief Reports; added reference and some extra information in V
    corecore