24,476 research outputs found
Simple Impurity Embedded in a Spherical Jellium: Approximations of Density Functional Theory compared to Quantum Monte Carlo Benchmarks
We study the electronic structure of a spherical jellium in the presence of a
central Gaussian impurity. We test how well the resulting inhomogeneity effects
beyond spherical jellium are reproduced by several approximations of density
functional theory (DFT). Four rungs of Perdew's ladder of DFT functionals,
namely local density approximation (LDA), generalized gradient approximation
(GGA), meta-GGA and orbital-dependent hybrid functionals are compared against
our quantum Monte Carlo (QMC) benchmarks. We identify several distinct
transitions in the ground state of the system as the electronic occupation
changes between delocalized and localized states. We examine the parameter
space of realistic densities () and moderate depths of the
Gaussian impurity (). The selected 18 electron system (with closed-shell
ground state) presents transitions while the 30 electron system
(with open-shell ground state) exhibits transitions. For the former
system, the accuracy for the transitions is clearly improving with increasing
sophistication of functionals with meta-GGA and hybrid functionals having only
small deviations from QMC. However, for the latter system, we find much larger
differences for the underlying transitions between our pool of DFT functionals
and QMC. We attribute this failure to treatment of the exact exchange within
these functionals. Additionally, we amplify the inhomogeneity effects by
creating the system with spherical shell which leads to even larger errors in
DFT approximations.Comment: 8 pages, 4 figures, submitted to PRB as a regular article revisited
version after revie
Multiorbital tunneling ionization of the CO molecule
We coincidently measure the molecular frame photoelectron angular
distribution and the ion sum-momentum distribution of single and double
ionization of CO molecules by using circularly and elliptically polarized
femtosecond laser pulses, respectively. The orientation dependent ionization
rates for various kinetic energy releases allow us to individually identify the
ionizations of multiple orbitals, ranging from the highest occupied to the next
two lower-lying molecular orbitals for various channels observed in our
experiments. Not only the emission of a single electron, but also the
sequential tunneling dynamics of two electrons from multiple orbitals are
traced step by step. Our results confirm that the shape of the ionizing
orbitals determine the strong laser field tunneling ionization in the CO
molecule, whereas the linear Stark effect plays a minor role.Comment: This paper has been accepted for publication by Physical Review
Letter
Period-doubling bifurcation in strongly anisotropic Bianchi I quantum cosmology
We solve the Wheeler-DeWitt equation for the minisuperspace of a cosmological
model of Bianchi type I with a minimally coupled massive scalar field as
source by generalizing the calculation of Lukash and Schmidt [1]. Contrarily to
other approaches we allow strong anisotropy. Combining analytical and numerical
methods, we apply an adiabatic approximation for , and as new feature we
find a period-doubling bifurcation. This bifurcation takes place near the
cosmological quantum boundary, i.e., the boundary of the quasiclassical region
with oscillating -function where the WKB-approximation is good. The
numerical calculations suggest that such a notion of a ``cosmological quantum
boundary'' is well-defined, because sharply beyond that boundary, the
WKB-approximation is no more applicable at all. This result confirms the
adequateness of the introduction of a cosmological quantum boundary in quantum
cosmology.Comment: Latest update of the paper at
http://www.physik.fu-berlin.de/~mbach/publics.html#
Adaptively refined large eddy simulations of clusters
We present a numerical scheme for modelling unresolved turbulence in
cosmological adaptive mesh refinement codes. As a first application, we study
the evolution of turbulence in the intra-cluster medium and in the core of a
galaxy cluster. Simulations with and without subgrid scale model are compared
in detail. Since the flow in the ICM is subsonic, the global turbulent energy
contribution at the unresolved length scales is smaller than 1% of the internal
energy. We find that the production of turbulence is closely correlated with
merger events occurring in the cluster environment, and its dissipation locally
affects the cluster energy budget. Because of this additional source of
dissipation, the core temperature is larger and the density is smaller in the
presence of subgrid scale turbulence than in the standard adiabatic run,
resulting in a higher entropy core value.Comment: Submitted to ApJ, 14 pages, 14 figures, 3 table
Developmental stress, condition, and birdsong: a case study in song sparrows.
Sexual-selection theory posits that ornaments and displays can reflect a signaler\u27s condition, which in turn is affected both by recent and developmental conditions. Moreover, developmental conditions can induce correlations between sexually selected and other traits if both types of traits exhibit developmental phenotypic plasticity in response to stressors. Thus, sexually selected traits may reflect recent and/or developmental characteristics of signalers. Here, we review data on the relationships between birdsong, a sexually selected trait, and developmental and current condition of birds from a long-term study of a population of song sparrows (Melospiza melodia). Field studies of free-living birds indicate that the complexity of a male\u27s songs, a permanent trait, reflects the size of a song-control region of his brain (HVC), and is correlated with body size and several parameters of immunity, specifically investment in protective proteins. However, the performance of a male\u27s songs, a dynamic trait, is not correlated to immune investment. Complexity of song is correlated with the glucocorticoid stress-response, and in some years response to stress predicts overwinter survival. Experimental manipulations have revealed that stressors in early life impair development of HVC, but that HVC recovers in size by adulthood. These manipulations result in impaired song-complexity and song-learning, but not song-performance. Experimental developmental stressors also affect growth, endocrine physiology, metabolism, and immune-function, often in a sex-specific manner. Combined, these studies suggest that song-complexity provides reliable information about early developmental experience, and about other traits that have critical developmental periods. Birdsong thus provides a multi-faceted sexually selected trait that may be an indicator both of developmental and recent conditions
Ion impact induced Interatomic Coulombic Decay in neon and argon dimers
We investigate the contribution of Interatomic Coulombic Decay induced by ion
impact in neon and argon dimers (Ne and Ar) to the production of low
energy electrons. Our experiments cover a broad range of perturbation strengths
and reaction channels. We use 11.37 MeV/u S, 0.125 MeV/u He,
0.1625 MeV/u He and 0.150 MeV/u He as projectiles and study
ionization, single and double electron transfer to the projectile as well as
projectile electron loss processes. The application of a COLTRIMS reaction
microscope enables us to retrieve the three-dimensional momentum vectors of the
ion pairs of the fragmenting dimer into Ne/Ne and
Ar/Ar (q = 1, 2, 3) in coincidence with at least one emitted
electron
- …