159,215 research outputs found

    Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy

    Get PDF
    Differential scanning calorimetry (DSC) was used to determine the thermodynamic functions of the undercooled liquid and the amorphous phase with respect to the crystalline state of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5bulk metallic glass forming alloy. The specific heat capacities of this alloy in the undercooled liquid, the amorphous state and the crystal were determined. The differences in enthalpy, āˆ†H, entropy, āˆ†S, and Gibbs free energy, āˆ†G, between crystal and the undercooled liquid were calculated using the measured specific heat capacity data as well as the heat of fusion. The results indicate that the Gibbs free energy difference between metastable undercooled liquid and crystalline solid, āˆ†G, stays small compared to conventional metallic glass forming alloys even for large undercoolings. Furthermore, the Kauzmann temperature, TK, where the entropy of the undercooled liquid equals to that of the crystal, was determined to be 560 K. The Kauzmann temperature is compared with the experimentally observed rate-dependent glass transition temperature, Tg. Both onset and end temperatures of the glass transition depend linearly on the logarithm of the heating rate based on the DSC experiments. Those characteristic temperatures for the kinetically observed glass transition become equal close to the Kauzmann temperature in this alloy, which suggests an underlying thermodynamic glass transition as a lower bound for the kinetically observed freezing process

    QCD effective action with a most general homogeneous field background

    Full text link
    We consider one-loop effective action of SU(3) QCD with a most general constant chromomagnetic (chromoelectric) background which has two independent Abelian field components. The effective potential with a pure magnetic background has a local minimum only when two Abelian components H_{\mu\nu}^3 and H_{\mu\nu}^8 of color magnetic field are orthogonal to each other. The non-trivial structure of the effective action has important implication in estimating quark-gluon production rate and p_T-distribution in quark-gluon plasma. In general the production rate depends on three independent Casimir invariants, in particular, it depends on the relative orientation between chromoelectric fields.Comment: 6 pages, 3 figures (9 pages in published version

    Searching for Ground Truth: a stepping stone in automating genre classification

    Get PDF
    This paper examines genre classification of documents and its role in enabling the effective automated management of digital documents by digital libraries and other repositories. We have previously presented genre classification as a valuable step toward achieving automated extraction of descriptive metadata for digital material. Here, we present results from experiments using human labellers, conducted to assist in genre characterisation and the prediction of obstacles which need to be overcome by an automated system, and to contribute to the process of creating a solid testbed corpus for extending automated genre classification and testing metadata extraction tools across genres. We also describe the performance of two classifiers based on image and stylistic modeling features in labelling the data resulting from the agreement of three human labellers across fifteen genre classes.

    Experimental determination of a timeā€“temperature-transformation diagram of the undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy using the containerless electrostatic levitation processing technique

    Get PDF
    High temperature high vacuum electrostatic levitation was used to determine the complete timeā€“temperatureā€“transformation (TTT) diagram of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass forming alloy in the undercooled liquid state. This is the first report of experimental data on the crystallization kinetics of a metallic system covering the entire temperature range of the undercooled melt down to the glass transition temperature. The measured TTT diagram exhibits the expected "C" shape. Existing models that assume polymorphic crystallization cannot satisfactorily explain the experimentally obtained TTT diagram. This originates from the complex crystallization mechanisms that occur in this bulk glass-forming system, involving large composition fluctuations prior to crystallization as well as phase separation in the undercooled liquid state below 800 K

    Metallic glass formation in highly undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 during containerless electrostatic levitation processing

    Get PDF
    Various sample sizes of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 with masses up to 80 mg were undercooled below Tg (the glass transition temperature) while electrostatically levitated. The final solidification product of the sample was determined by x-ray diffraction to have an amorphous phase. Differential scanning calorimetry was used to confirm the absence of crystallinity in the processes sample. The amorphous phase could be formed only after heating the samples above the melting temperature for extended periods of time in order to break down and dissolve oxides or other contaminants which would otherwise initiate heterogeneous nucleation of crystals. Noncontact pyrometry was used to monitor the sample temperature throughout processing. The critical cooling rate required to avoid crystallization during solidification of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy fell between 0.9 and 1.2 K/s

    Analysis of resonant inelastic x-ray scattering at the KK edge in NiO

    Full text link
    We analyze the resonant inelastic x-ray scattering (RIXS) spectra at the Ni KK edge in an antiferromagnetic insulator NiO by applying the theory developed by the present authors. It is based on the Keldysh Green's function formalism, and treats the core-hole potential in the intermediate state within the Born approximation. We calculate the single-particle energy bands within the Hartree-Fock approximation on the basis of the multi-orbital tight-binding model. Using these energy bands together with the 4p4p density of states from an ab initio band structure calculation, we calculate the RIXS intensities as a function of energy loss. By taking account of electron correlation within the random phase approximation (RPA), we obtain quantitative agreement with the experimental RIXS spectra, which consist of prominent two peaks around 5 eV and 8 eV, and the former shows considerable dispersion while the latter shows no dispersion. We interpret the peaks as a result of a band-to-band transition augmented by the RPA correlation.Comment: 11 pages, 10 figures, submitted to PR

    Hemispherical total emissivity and specific heat capacity of deeply undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts

    Get PDF
    High-temperature high-vacuum electrostatic levitation (HTHVESL) and differential scanning calorimetry (DSC) were combined to determine the hemispherical total emissivity epsilon T, and the specific heat capacity cp, of the undercooled liquid and throughout the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass forming alloy. The ratio of cp/epsilon T as a function of undercooling was determining from radiative cooling curves measured in the HTHVESL. Using specific heat capacity data obtained by DSC investigations close to the glass transition and above the melting point, epsilon T and cp were separated and the specific heat capacity of the whole undercooled liquid region was determined. Furthermore, the hemispherical total emissivity of the liquid was found to be about 0.22 at 980 K. On undercooling the liquid, the emissivity decreases to approximately 0.18 at about 670 K, where the undercooled liquid starts to freeze to a glass. No significant changes of the emissivity are observed as the alloy undergoes the glass transition

    Weak Localization Effect in Superconductors

    Full text link
    We study the effect of weak localization on the transition temperatures of superconductors using time-reversed scattered state pairs, and find that the weak localization effect weakens electron-phonon interactions. With solving the BCS TcT_{c} equation, the calculated values for TcT_c are in good agreement with experimental data for various two- and three-dimensional disordered superconductors. We also find that the critical sheet resistance for the suppression of superconductivity in thin films does not satisfy the universal behavior but depends on sample, in good agreement with experiments. but depends on sample, in good agreement with experiments.Comment: 14 pages, Revtex, 5 ps figure

    Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with NaI(Tl) crystal Detectors

    Full text link
    Limits on the cross section for weakly interacting massive particles (WIMPs) scattering off nucleons in the NaI(Tl) detectors at the Yangyang Underground Laboratory are obtained with a 2967.4 kg*day data exposure. Nuclei recoiling are identified by the pulse shape of scintillating photon signals. Data are consistent with no nuclear recoil hypothesis, and 90% confidence level upper limits are set. These limits partially exclude the DAMA/LIBRA region of WIMP-sodium interaction with the same NaI(Tl) target detector. This 90% confidence level upper limit on WIMP-nucleon spin-independent cross section is 3.26*10^-4 pb for a WIMP mass at 10 GeV/c^2
    • ā€¦
    corecore