120 research outputs found
Acute dosing of latrepirdine (Dimebon), a possible Alzheimer therapeutic, elevates extracellular amyloid-beta levels in vitro and in vivo.
BACKGROUND: Recent reports suggest that latrepirdine (Dimebon, dimebolin), a retired Russian antihistamine, improves cognitive function in aged rodents and in patients with mild to moderate Alzheimer's disease (AD). However, the mechanism(s) underlying this benefit remain elusive. AD is characterized by extracellular accumulation of the amyloid-beta (Abeta) peptide in the brain, and Abeta-lowering drugs are currently among the most popular anti-amyloid agents under development for the treatment of AD. In the current study, we assessed the effect of acute dosing of latrepirdine on levels of extracellular Abeta using in vitro and in vivo experimental systems. RESULTS: We evaluated extracellular levels of Abeta in three experimental systems, under basal conditions and after treatment with latrepirdine. Mouse N2a neuroblastoma cells overexpressing Swedish APP were incubated for 6 hr in the presence of either vehicle or vehicle + latrepirdine (500pM-5 muM). Synaptoneurosomes were isolated from TgCRND8 mutant APP-overexpressing transgenic mice and incubated for 0 to 10 min in the absence or presence of latrepirdine (1 muM or 10 muM). Drug-naïve Tg2576 Swedish mutant APP overexpressing transgenic mice received a single intraperitoneal injection of either vehicle or vehicle + latrepirdine (3.5 mg/kg). Picomolar to nanomolar concentrations of acutely administered latrepirdine increased the extracellular concentration of Abeta in the conditioned media from Swedish mutant APP-overexpressing N2a cells by up to 64% (p = 0.01), while a clinically relevant acute dose of latrepirdine administered i.p. led to an increase in the interstitial fluid of freely moving APP transgenic mice by up to 40% (p = 0.01). Reconstitution of membrane protein trafficking and processing is frequently inefficient, and, consistent with this interpretation, latrepirdine treatment of isolated TgCRND8 synaptoneurosomes involved higher concentrations of drug (1-10 muM) and led to more modest increases in extracellular Abeta(x-42 )levels (+10%; p = 0.001); of note, however, was the observation that extracellular Abeta(x-40 )levels did not change. CONCLUSIONS: Here, we report the surprising association of acute latrepirdine dosing with elevated levels of extracellular Abeta as measured in three independent neuron-related or neuron-derived systems, including the hippocampus of freely moving Tg2576 mice. Given the reported association of chronic latrepirdine treatment with improvement in cognitive function, the effects of chronic latrepirdine treatment on extracellular Abeta levels must now be determined.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis
Background and aims:The serum/plasma proteome was explored for biomarkers to improve the diagnostic ability of CA19-9 in pancreatic adenocarcinoma (PC).Methods:A Training Set of serum samples from 20 resectable and 18 stage IV PC patients, 54 disease controls (DCs) and 68 healthy volunteers (HVs) were analysed by surface-enhanced laser desorption and ionisation time-of-flight mass spectrometry (SELDI-TOF MS). The resulting protein panel was validated on 40 resectable PC, 21 DC and 19 HV plasma samples (Validation-1 Set) and further by ELISA on 33 resectable PC, 28 DC and 18 HV serum samples (Validation-2 Set). Diagnostic panels were derived using binary logistic regression incorporating internal cross-validation followed by receiver operating characteristic (ROC) analysis.Results:A seven-protein panel from the training set PC vs DC and from PC vs HV samples gave the ROC area under the curve (AUC) of 0.90 and 0.90 compared with 0.87 and 0.91 for CA19-9. The AUC was greater (0.97 and 0.99, P0.05) when CA19-9 was added to the panels and confirmed on the validation-1 samples. A simplified panel of apolipoprotein C-I (ApoC-I), apolipoprotein A-II (ApoA-II) and CA19-9 was tested on the validation-2 set by ELISA, in which the ROC AUC was greater than that of CA19-9 alone for PC vs DC (0.90 vs 0.84) and for PC vs HV (0.96 vs 0.90).Conclusions:A simplified diagnostic panel of CA19-9, ApoC-I and ApoA-II improves the diagnostic ability of CA19-9 alone and may have clinical utility
Constraints on the decay of Ta
Ta is a rare nuclear isomer whose decay has never been observed. Its
remarkably long lifetime surpasses the half-lives of all other known
and electron capture decays due to the large K-spin differences and small
energy differences between the isomeric and lower energy states. Detecting its
decay presents a significant experimental challenge but could shed light on
neutrino-induced nucleosynthesis mechanisms, the nature of dark matter and
K-spin violation. For this study, we repurposed the MAJORANA DEMONSTRATOR, an
experimental search for the neutrinoless double-beta decay of Ge using
an array of high-purity germanium detectors, to search for the decay of
Ta. More than 17 kilograms, the largest amount of tantalum metal ever
used for such a search was installed within the ultra-low background detector
array. In this paper we present results from the first year of Ta data taking
and provide an updated limit for the Ta half-life on the different
decay channels. With new limits up to 1.5 x years, we improved
existing limits by one to two orders of magnitude. This result is the most
sensitive search for a single and electron capture decay ever achieved
Resveratrol Acts Not through Anti-Aggregative Pathways but Mainly via Its Scavenging Properties against Aβ and Aβ-Metal Complexes Toxicity
It has been recently suggested that resveratrol can be effective in slowing down Alzheimer's disease (AD) development. As reported in many biochemical studies, resveratrol seems to exert its neuro-protective role through inhibition of β-amyloid aggregation (Aβ), by scavenging oxidants and exerting anti-inflammatory activities. In this paper, we demonstrate that resveratrol is cytoprotective in human neuroblastoma cells exposed to Aβ and or to Aβ-metal complex. Our findings suggest that resveratrol acts not through anti-aggregative pathways but mainly via its scavenging properties
Numerical simulations of complex fluid-fluid interface dynamics
Interfaces between two fluids are ubiquitous and of special importance for
industrial applications, e.g., stabilisation of emulsions. The dynamics of
fluid-fluid interfaces is difficult to study because these interfaces are
usually deformable and their shapes are not known a priori. Since experiments
do not provide access to all observables of interest, computer simulations pose
attractive alternatives to gain insight into the physics of interfaces. In the
present article, we restrict ourselves to systems with dimensions comparable to
the lateral interface extensions. We provide a critical discussion of three
numerical schemes coupled to the lattice Boltzmann method as a solver for the
hydrodynamics of the problem: (a) the immersed boundary method for the
simulation of vesicles and capsules, the Shan-Chen pseudopotential approach for
multi-component fluids in combination with (b) an additional
advection-diffusion component for surfactant modelling and (c) a molecular
dynamics algorithm for the simulation of nanoparticles acting as emulsifiers.Comment: 24 pages, 12 figure
The Role of Presenilin and its Interacting Proteins in the Biogenesis of Alzheimer’s Beta Amyloid
The biogenesis and accumulation of the beta amyloid protein (Aβ) is a key event in the cascade of oxidative and inflammatory processes that characterises Alzheimer’s disease. The presenilins and its interacting proteins play a pivotal role in the generation of Aβ from the amyloid precursor protein (APP). In particular, three proteins (nicastrin, aph-1 and pen-2) interact with presenilins to form a large multi-subunit enzymatic complex (γ-secretase) that cleaves APP to generate Aβ. Reconstitution studies in yeast and insect cells have provided strong evidence that these four proteins are the major components of the γ-secretase enzyme. Current research is directed at elucidating the roles that each of these protein play in the function of this enzyme. In addition, a number of presenilin interacting proteins that are not components of γ-secretase play important roles in modulating Aβ production. This review will discuss the components of the γ-secretase complex and the role of presenilin interacting proteins on γ-secretase activity
Prevalence, Distribution, and Impact of Mild Cognitive Impairment in Latin America, China, and India: A 10/66 Population-Based Study
A set of cross-sectional surveys carried out in Cuba, Dominican Republic, Peru, Mexico, Venezuela, Puerto Rico, China, and India reveal the prevalence and between-country variation in mild cognitive impairment at a population level
The structure and function of Alzheimer's gamma secretase enzyme complex
The production and accumulation of the beta amyloid protein (Aβ) is a key event in the cascade of oxidative and inflammatory processes that characterizes Alzheimer’s disease (AD). A multi-subunit enzyme complex, referred to as gamma (γ) secretase, plays a pivotal role in the generation of Aβ from its parent molecule, the amyloid precursor protein (APP). Four core components (presenilin, nicastrin, aph-1, and pen-2) interact in a high-molecular-weight complex to perform intramembrane proteolysis on a number of membrane-bound proteins, including APP and Notch. Inhibitors and modulators of this enzyme have been assessed for their therapeutic benefit in AD. However, although these agents reduce Aβ levels, the majority have been shown to have severe side effects in pre-clinical animal studies, most likely due to the enzymes role in processing other proteins involved in normal cellular function. Current research is directed at understanding this enzyme and, in particular, at elucidating the roles that each of the core proteins plays in its function. In addition, a number of interacting proteins that are not components of γ-secretase also appear to play important roles in modulating enzyme activity. This review will discuss the structural and functional complexity of the γ-secretase enzyme and the effects of inhibiting its activity
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
- …