39 research outputs found

    Thyroid function in psoriasis

    Get PDF

    MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.

    Get PDF
    Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort

    The role of HER-2/neu expression on the survival of patients with lung cancer: a systematic review of the literature

    Get PDF
    C-erbB-2 prognostic value for survival in patients with lung cancer remains controversial. We performed a systematic review of the literature to clarify its impact. Studies were identified by an electronic search in order to aggregate the survival results, after a methodological assessment using the scale of the European Lung Cancer Working Party. To be eligible, a study had to deal with c-erbB-2 assessment in lung cancer patients and to analyse survival according to c-erbB-2 expression. In total, 30 studies were eligible: 24 studies dealt with non-small-cell lung carcinoma (NSCLC), five with adenocarcinoma and one study dealt with small-cell carcinoma. In all, 31% of the patients were positive for c-erbB-2. According to c-erbB-2 expression, 13 studies were 'negative' (significant detrimental effect on survival), one 'positive' (significant survival improvement) and 16 not significant. Significant studies had a better subscore relative to analysis and results report than nonsignificant studies. In total, 86% of the significant studies and only 56% of the nonsignificant studies were evaluable for the meta-analysis. This suggests a possible bias in our aggregated results. For NSCLC, the hazard ratio was 1.55 (95% CI: 1.29-1.86) in favour of tumours that do not express c-erbB-2. In conclusion, the overexpression of c-erbB-2 might be a factor of poor prognosis for survival in NSCLC, but there is a potential bias in favour of the significant studies with an overestimation risk of the magnitude of the true effect of c-erbB-2 overexpression.Journal ArticleResearch Support, Non-U.S. Gov'tReviewinfo:eu-repo/semantics/publishe

    Role of Bcl-2 as a prognostic factor for survival in lung cancer: a systematic review of the literature with meta-analysis

    Get PDF
    The role of the anti-apoptotic protein Bcl-2 in lung cancer remains controversial. In order to clarify its impact on survival in small and non-small cell lung cancer (NSCLC), we performed a systematic review of the literature. Trials were selected for further analysis if they provided an independent assessment of Bcl-2 in lung cancer and reported analysis of survival data according to Bcl-2 status. To make it possible to aggregate survival results of the published studies, their methodology was assessed using a quality scale designed by the European Lung Cancer Working Party (including study design, laboratory methods and analysis). Of 28 studies, 11 identified Bcl-2 expression as a favourable prognostic factor and three linked it with poor prognosis; 14 trials were not significant. No differences in scoring measurement were detected between the studies, except that significantly higher scores were found in the trials with the largest sample sizes. Assessments of methodology and of laboratory technique were made independently of the conclusion of the trials. A total of 25 trials, comprising 3370 patients, provided sufficient information for the meta-analysis. The studies were categorised according to histology, disease stage and laboratory technique. The combined hazard ratio (HR) suggested that a positive Bcl-2 status has a favourable impact on survival: 0.70 (95% confidence interval 0.57-0.86) in seven studies on stages I-II NSCLC; 0.50 (0.39-0.65) in eight studies on surgically resected NSCLC; 0.91 (0.76-1.10) in six studies on any stage NSCLC; 0.57 (0.41-0.78) in five studies on squamous cell cancer; 0.75 (0.61-0.93) and 0.71 (0.61-0.83) respectively for five studies detecting Bcl-2 by immunohistochemistry with Ab clone 100 and for 13 studies assessing Bcl-2 with Ab clone 124; 0.92 (0.73-1.16) for four studies on small cell lung cancer; 1.26 (0.58-2.72) for three studies on neuroendocrine tumours. In NSCLC, Bcl-2 expression was associated with a better prognosis. The data on Bcl-2 expression in small cell lung cancer were insufficient to assess its prognostic value.Journal ArticleMeta-AnalysisResearch Support, Non-U.S. Gov'tReviewinfo:eu-repo/semantics/publishe

    The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis

    Get PDF
    The proto-oncogene RAS, coding for a 21 kDa protein (p21), is mutated in 20% of lung cancer. However, the literature remains controversial on its prognostic significance for survival in lung cancer. We performed a systematic review of the literature with meta-analysis to assess its possible prognostic value on survival. Published studies on lung cancer assessing prognostic value of RAS mutation or p21 overexpression on survival were identified by an electronic search. After a methodological assessment, we estimated individual hazard ratios (HR) estimating RAS protein alteration or RAS mutation effect on survival and combined them using meta-analytic methods. In total, 53 studies were found eligible, with 10 concerning the same cohorts of patients. Among the 43 remaining studies, the revelation method was immunohistochemistry (IHC) in nine and polymerase chain reaction (PCR) in 34. Results in terms of survival were significantly pejorative, significantly favourable, not significant and not conclusive in 9, 1, 31, 2, respectively. In total, 29 studies were evaluable for meta-analysis but we aggregated only the 28 dealing with non-small-cell lung cancer (NSCLC) and not the only one dealing with small-cell-lung cancer (SCLC). The quality scores were not statistically significantly different between studies with or without significant results in terms of survival, allowing us to perform a quantitative aggregation. The combined HR was 1.35 (95% CI: 1.16–1.56), showing a worse survival for NSCLC with KRAS2 mutations or p21 overexpression and, particularly, in adenocarcinomas (ADC) (HR 1.59; 95% CI 1.26–2.02) and in studies using PCR (HR 1.40; 95% CI 1.18–1.65) but not in studies using IHC (HR 1.08; 95% CI 0.86–1.34). RAS appears to be a pejorative prognostic factor in terms of survival in NSCLC globally, in ADC and when it is studied by PCR

    The regulation of IL-10 expression

    Get PDF
    Interleukin (IL)-10 is an important immunoregulatory cytokine and an understanding of how IL-10 expression is controlled is critical in the design of immune intervention strategies. IL-10 is produced by almost all cell types within the innate (including macrophages, monocytes, dendritic cells (DCs), mast cells, neutrophils, eosinophils and natural killer cells) and adaptive (including CD4(+) T cells, CD8(+) T cells and B cells) immune systems. The mechanisms of IL-10 regulation operate at several stages including chromatin remodelling at the Il10 locus, transcriptional regulation of Il10 expression and post-transcriptional regulation of Il10 mRNA. In addition, whereas some aspects of Il10 gene regulation are conserved between different immune cell types, several are cell type- or stimulus-specific. Here, we outline the complexity of IL-10 production by discussing what is known about its regulation in macrophages, monocytes, DCs and CD4(+) T helper cells
    corecore