203 research outputs found

    Hamiltonian Embedding of SU(2) Higgs Model in the Unitary Gauge

    Full text link
    Following systematically the generalized Hamiltonian approach of Batalin, Fradkin and Tyutin (BFT), we embed the second-class non-abelian SU(2) Higgs model in the unitary gauge into a gauge invariant theory. The strongly involutive Hamiltonian and constraints are obtained as an infinite power series in the auxiliary fields. Furthermore, comparing these results with those obtained from the gauged second class Lagrangian, we arrive at a simple interpretation for the first class Hamiltonian, constraints and observables.Comment: 13 pages, Latex, no figure

    Symplectic quantization of self-dual master Lagrangian

    Get PDF
    We consider the master Lagrangian of Deser and Jackiw, interpolating between the self-dual and the Maxwell-Chern-Simons Lagrangian, and quantize it following the symplectic approach, as well as the traditional Dirac scheme. We demonstrate the equivalence of these procedures in the subspace of the second-class constraints. We then proceed to embed this mixed first- and second-class system into an extended first-class system within the framework of both approaches, and construct the corresponding generator for this extended gauge symmetry in both formulations.Comment: 27 page

    Batalin-Tyutin Quantization of the Self-Dual Massive Theory in Three Dimensions

    Full text link
    We quantize the self-dual massive theory by using the Batalin-Tyutin Hamiltonian method, which systematically embeds second class constraint system into first class one in the extended phase space by introducing the new fields. Through this analysis we obtain simultaneously the St\"uckelberg scalar term related to the explicit gauge-breaking effect and the new type of Wess-Zumino action related to the Chern-Simons term.Comment: 17 pages, SOGANG-HEP 191/9

    Flavor symmetry breaking effects on SU(3) Skyrmion

    Get PDF
    We study the massive SU(3) Skyrmion model to investigate the flavor symmetry breaking (FSB) effects on the static properties of the strange baryons in the framework of the rigid rotator quantization scheme combined with the improved Dirac quantization one. Both the chiral symmetry breaking pion mass and FSB kinetic terms are shown to improve cc the ratio of the strange-light to light-light interaction strengths and cˉ\bar{c} that of the strange-strange to light-light.Comment: 12 pages, latex, no figure

    Ab initio study of thallium nanoclusters on Si(111)-7x7

    Get PDF
    We have studied the stability of a thallium nanocluster of various numbers of atoms (N=1,2,...,10) on a Si(111)-7x7 substrate using density functional theory total energy calculations. We have compared it with clusters of other group III elements (Al, Ga, and In). Thallium is found to be unstable with the triangular cluster, which has been known to be stable for other group III elements. Instead, a slightly different structure, in which Si atop atoms are lower than thallium atoms in height by 2.56 angstrom, was found to be quite stable. Such an abnormal structure originates from the inert pair of 6s(2) electrons due to the significant spin-orbit interaction. The initial relaxed N=6 Tl cluster continues to grow with increasing N up to N=9 in the faulted-half unit cell, which is consistent with experimental observationsclose121

    Operator Ordering Problem of the Nonrelativistic Chern-Simons Theory

    Full text link
    The operator ordering problem due to the quantization or regularization ambiguity in the Chern-Simons theory exists. However, we show that this can be avoided if we require Galilei covariance of the nonrelativistic Abelian Chern-Simons theory even at the quantum level for the extended sources. The covariance can be recovered only by choosing some particular operator orderings for the generators of the Galilei group depending on the quantization ambiguities of the gaugemattergauge-matter commutation relation. We show that the desired ordering for the unusual prescription is not the same as the well-known normal ordering but still satisfies all the necessary conditions. Furthermore, we show that the equations of motion can be expressed in a similar form regardless of the regularization ambiguity. This suggests that the different regularization prescriptions do not change the physics. On the other hand, for the case of point sources the regularization prescription is uniquely determined, and only the orderings, which are equivalent to the usual one, are allowed.Comment: 18 page

    Dilaton gravity approach to three dimensional Lifshitz black hole

    Full text link
    The z=3 Lifshitz black hole is an exact black hole solution to the new massive gravity in three dimensions. In order to understand this black hole clearly, we perform a dimensional reduction to two dimensional dilaton gravity by utilizing the circular symmetry. Considering the linear dilaton, we find the same Lifshitz black hole in two dimensions. This implies that all thermodynamic quantities of the z=3 Lifshitz black hole could be obtained from its corresponding black hole in two dimensions. As a result, we derive the temperature, mass, heat capacity, Bekesnstein-Hawking entropy, and free energy.Comment: 13 pages, 1 figure, version to appear in EPJ

    Quasinormal modes from potentials surrounding the charged dilaton black hole

    Full text link
    We clarify the purely imaginary quasinormal frequencies of a massless scalar perturbation on the 3D charged-dilaton black holes. This case is quite interesting because the potential-step appears outside the event horizon similar to the case of the electromagnetic perturbations on the large Schwarzschild-AdS black holes. It turns out that the potential-step type provides the purely imaginary quasinormal frequencies, while the potential-barrier type gives the complex quasinormal modes.Comment: 19 pages, 8 figure

    Effects of annealing treatment prior to cold rolling on delayed fracture properties in ferrite-austenite duplex lightweight steels

    Get PDF
    Tensile properties of recently developed automotive high-strength steels containing about 10 wt pct of Mn and Al are superior to other conventional steels, but the active commercialization has been postponed because they are often subjected to cracking during formation or to the delayed fracture after formation. Here, the delayed fracture behavior of a ferrite-austenite duplex lightweight steel whose microstructure was modified by a batch annealing treatment at 1023 K (750 A degrees C) prior to cold rolling was examined by HCl immersion tests of cup specimens, and was compared with that of an unmodified steel. After the batch annealing, band structures were almost decomposed as strong textures of {100}aOE (c) 011 > alpha-fibers and {111}aOE (c) 112 > gamma-fibers were considerably dissolved, while ferrite grains were refined. The steel cup specimen having this modified microstructure was not cracked when immersed in an HCl solution for 18 days, whereas the specimen having unmodified microstructure underwent the delayed fracture within 1 day. This time delayed fracture was more critically affected by difference in deformation characteristics such as martensitic transformation and deformation inhomogeneity induced from concentration of residual stress or plastic strain, rather than the difference in initial microstructures. The present work gives a promise for automotive applications requiring excellent mechanical and delayed fracture properties as well as reduced specific weight.ope
    corecore