32 research outputs found

    Evolutionary Algorithm to Optimize Process Parameters of Al/Steel Magnetic Pulse Welding

    No full text
    The Magnetic Pulse Welding (MPW) process uses only electromagnetic force to create a solid-state metallurgical bond between a working coil and outer workpiece. The electromagnetic force drives the outer tube to collide with the inner rod, resulting in successful bonding. However, due to the dissimilarity of the MPW joint, only a portion of the interface forms a metallurgical bond, which affects the quality of the joint. Therefore, the purpose of this study is to analyze the effects of process parameters on joint quality through experimental work using RSM. Furthermore, an optimization algorithm is utilized to optimize the process parameters used in magnetic pulse welding. A1070 aluminum and S45C carbon steel were used as the materials, while peak current, gap between working coil and outer tube, and frequency were chosen as the process parameters for MPW. The welding conditions are determined through experimental design. After welding, the maximum load and weld length are measured to analyze the effect of the process parameters, and a prediction model is developed. Specifically, to achieve a high-quality joint, the process parameters are optimized using the Imperialist Competitive Algorithm (ICA) and Genetic Algorithm (GA). The results reveal that the peak current is a significant parameter, and the developed prediction model exhibits high accuracy. Furthermore, the ICA algorithm proves very effective in determining the process parameters for achieving a high-quality Al/Steel MPW joint

    Simultaneous Wireless Power Transfer and Secure Multicasting in Cooperative Decode-and-Forward Relay Networks

    No full text
    In this paper, we investigate simultaneous wireless power transfer and secure multicasting via cooperative decode-and-forward (DF) relays in the presence of multiple energy receivers and eavesdroppers. Two scenarios are considered under a total power budget: maximizing the minimum harvested energy among the energy receivers under a multicast secrecy rate constraint; and maximizing the multicast secrecy rate under a minimum harvested energy constraint. For both scenarios, we solve the transmit power allocation and relay beamformer design problems by using semidefinite relaxation and bisection technique. We present numerical results to analyze the energy harvesting and secure multicasting performances in cooperative DF relay networks

    Optimizing Lifetime of Internet-of-Things Networks with Dynamic Scanning

    No full text
    With the development of Internet-of-Things (IoT) technology, industries such as smart agriculture, smart health, smart buildings, and smart cities are attracting attention. As a core wireless communication technology, Bluetooth Low Energy (BLE) is gaining a lot of interest as a highly reliable low-power communication technology. In particular, BLE enables a connectionless mesh network that propagates data in a flooding manner using advertising channels. In this paper, we aim to optimize the energy consumption of the network by minimizing the scanning time while preserving the reliability of the network. Maximizing network lifetime requires various optimizing algorithms, including exhaustive searching and gradient descent searching. However, they are involved with excessive computational complexity and high implementation costs. To reduce computational complexity of network optimization, we mathematically model the energy consumption of BLE networks and formulate maximizing network lifetime as an optimization problem. We first present an analytical approach to solve the optimization problem and show that finding the minima from the complicated objective function of the optimization problem does not guarantee a valid solution to the problem. As a low-complexity solution, we approximate the complicated objective function into a convex form and derive a closed-form expression of the suboptimal solution. Our simulation results show that the proposed suboptimal solution provides almost equivalent performance compared to the optimal solution in terms of network lifetime. With very low computational complexity, the proposed suboptimal solution can extensively reduce implementation costs

    Transmit Power Allocation for Physical Layer Security in Cooperative Multi-Hop Full-Duplex Relay Networks

    No full text
    In this paper, we consider a transmit power allocation problem for secure transmission in multi-hop decode-and-forward (DF) full-duplex relay (FDR) networks, where multiple FDRs are located at each hop and perform cooperative beamforming to null out the signal at multiple eavesdroppers. For a perfect self-interference cancellation (PSIC) case, where the self-interference signal at each FDR is completely canceled, we derive an optimal power allocation (OPA) strategy using the Karush-Kuhn-Tucker (KKT) conditions to maximize the achievable secrecy rate under an overall transmit power constraint. In the case where residual self-interferences exist owing to imperfect self-interference cancellation (ISIC), we also propose a transmit power allocation scheme using the geometric programming (GP) method. Numerical results are presented to verify the secrecy rate performance of the proposed power allocation schemes

    Online and Unplugged: Locating Korean American Teens in Cyberspace

    No full text

    Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning

    No full text
    In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features
    corecore