115,546 research outputs found

    Generalized BFT Formalism of Electroweak Theory in the Unitary Gauge

    Full text link
    We systematically embed the SU(2)×\timesU(1) Higgs model in the unitary gauge into a fully gauge-invariant theory by following the generalized BFT formalism. We also suggest a novel path to get a first-class Lagrangian directly from the original second-class one using the BFT fields.Comment: 14 pages, Latex, no figure

    The quantization of the chiral Schwinger model based on the BFT-BFV formalism II

    Get PDF
    We apply an improved version of Batalin-Fradkin-Tyutin (BFT) Hamiltonian method to the a=1 chiral Schwinger Model, which is much more nontrivial than the a>1.one.Furthermore,throughthepathintegralquantization,wenewlyresolvetheproblemofthenontrivial one. Furthermore, through the path integral quantization, we newly resolve the problem of the non-trivial \deltafunctionaswellasthatoftheunwantedFourierparameter function as well as that of the unwanted Fourier parameter \xi$ in the measure. As a result, we explicitly obtain the fully gauge invariant partition function, which includes a new type of Wess-Zumino (WZ) term irrelevant to the gauge symmetry as well as usual WZ action.Comment: 17 pages, To be published in J. Phys.

    Canonical Quantization of the Self-Dual Model coupled to Fermions

    Get PDF
    This paper is dedicated to formulate the interaction picture dynamics of the self-dual field minimally coupled to fermions. To make this possible, we start by quantizing the free self-dual model by means of the Dirac bracket quantization procedure. We obtain, as result, that the free self-dual model is a relativistically invariant quantum field theory whose excitations are identical to the physical (gauge invariant) excitations of the free Maxwell-Chern-Simons theory. The model describing the interaction of the self-dual field minimally coupled to fermions is also quantized through the Dirac bracket quantization procedure. One of the self-dual field components is found not to commute, at equal times, with the fermionic fields. Hence, the formulation of the interaction picture dynamics is only possible after the elimination of the just mentioned component. This procedure brings, in turns, two new interaction terms, which are local in space and time while non-renormalizable by power counting. Relativistic invariance is tested in connection with the elastic fermion-fermion scattering amplitude. We prove that all the non-covariant pieces in the interaction Hamiltonian are equivalent to the covariant minimal interaction of the self-dual field with the fermions. The high energy behavior of the self-dual field propagator corroborates that the coupled theory is non-renormalizable. Certainly, the self-dual field minimally coupled to fermions bears no resemblance with the renormalizable model defined by the Maxwell-Chern-Simons field minimally coupled to fermions.Comment: 16 pages, no special macros, no corrections in the pape

    Symplectic quantization of self-dual master Lagrangian

    Get PDF
    We consider the master Lagrangian of Deser and Jackiw, interpolating between the self-dual and the Maxwell-Chern-Simons Lagrangian, and quantize it following the symplectic approach, as well as the traditional Dirac scheme. We demonstrate the equivalence of these procedures in the subspace of the second-class constraints. We then proceed to embed this mixed first- and second-class system into an extended first-class system within the framework of both approaches, and construct the corresponding generator for this extended gauge symmetry in both formulations.Comment: 27 page

    Spin relaxation of two-dimensional holes in strained asymmetric SiGe quantum wells

    Full text link
    We analyze spin splitting of the two-dimensional hole spectrum in strained asymmetric SiGe quantum wells (QWs). Based on the Luttinger Hamiltonian, we obtain expressions for the spin-splitting parameters up to the third order in the in-plane hole wavevector. The biaxial strain of SiGe QWs is found to be a key parameter that controls spin splitting. Application to SiGe field-effect transistor structures indicates that typical spin splitting at room temperature varies from a few tenth of meV in the case of Si QW channels to several meV for the Ge counterparts, and can be modified efficiently by gate-controlled variation of the perpendicular confining electric field. The analysis also shows that for sufficiently asymmetric QWs, spin relaxation is due mainly to the spin-splitting related D'yakonov-Perel' mechanism. In strained Si QWs, our estimation shows that the hole spin relaxation time can be on the order of a hundred picoseconds at room temperature, suggesting that such structures are suitable for p-type spin transistor applications as well
    corecore