19,205 research outputs found

    Mirror duality and noncommutative tori

    Full text link
    In this paper, we study a mirror duality on a generalized complex torus and a noncommutative complex torus. First, we derive a symplectic version of Riemann condition using mirror duality on ordinary complex tori. Based on this we will find a mirror correspondence on generalized complex tori and generalize the mirror duality on complex tori to the case of noncommutative complex tori.Comment: 22pages, no figure

    Quantum Teleportation with a Complete Bell State Measurement

    Full text link
    We report a quantum teleportation experiment in which nonlinear interactions are used for the Bell state measurements. The experimental results demonstrate the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that \emph{all} four Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle.Comment: 4 pages, submitted to PR

    Competition between Kondo and RKKY correlations in the presence of strong randomness

    Full text link
    We propose that competition between Kondo and magnetic correlations results in a novel universality class for heavy fermion quantum criticality in the presence of strong randomness. Starting from an Anderson lattice model with disorder, we derive an effective local field theory in the dynamical mean-field theory (DMFT) approximation, where randomness is introduced into both hybridization and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Performing the saddle-point analysis in the U(1) slave-boson representation, we reveal its phase diagram which shows a quantum phase transition from a spin liquid state to a local Fermi liquid phase. In contrast with the clean limit of the Anderson lattice model, the effective hybridization given by holon condensation turns out to vanish, resulting from the zero mean value of the hybridization coupling constant. However, we show that the holon density becomes finite when variance of hybridization is sufficiently larger than that of the RKKY coupling, giving rise to the Kondo effect. On the other hand, when the variance of hybridization becomes smaller than that of the RKKY coupling, the Kondo effect disappears, resulting in a fully symmetric paramagnetic state, adiabatically connected with the spin liquid state of the disordered Heisenberg model. .....

    Deep ROSAT-HRI observations of the NGC 1399/NGC 1404 region: morphology and structure of the X-ray halo

    Get PDF
    We present the analysis of a deep (167 ks) ROSAT HRI observation of the cD galaxy NGC 1399 in the Fornax cluster. Using both HRI and, at larger radii, archival PSPC data, we find that the radial behavior of the X-ray surface brightness profile is not consistent with a simple Beta model and suggests instead three distinct components. We use a multi-component bidimensional model to study in detail these three components that we identify respectively with the cooling flow region, the galactic and the cluster halo. From these data we derive a binding mass distribution in agreement with that suggested by optical dynamical indicators, with an inner core dominated by luminous matter and an extended dark halo differently distributed on galactic and cluster scales. The HRI data and a preliminary analysis of Chandra public data, allow us to detect significant density fluctuations in the halo. We discuss possible non-equilibrium scenarios to explain the hot halo structure, including tidal interactions with neighboring galaxies, ram stripping from the intra-cluster medium and merging events. In the innermost region of NGC 1399, the comparison between the X-ray and radio emission suggests that the radio emitting plasma is displacing and producing shocks in the hot X-ray emitting gas. We found that the NGC 1404 halo is well represented by a single symmetric Beta model and follows the stellar light profile within the inner 8 kpc. The mass distribution is similar to the `central' component of the NGC 1399 halo. At larger radii ram pressure stripping from the intra-cluster medium produces strong asymmetries in the gas distribution. Finally we discuss the properties of the point source population finding evidence of correlation between the source excess and NGC 1399.Comment: 34 pages in aastex5.0 format, including 28 B&W and 4 color figures. Uses LaTex packages: subfigure, lscape and psfig. Accepted for publication in ApJ. High resolution version can be found at: http://www.na.astro.it/~paolillo/publications.htm

    Electric field and tip geometry effects on dielectrophoretic growth of carbon nanotube nanofibrils on scanning probes

    Full text link
    Single-wall carbon nanotube (SWNT) nanofibrils were assembled onto a variety of conductive scanning probes including atomic force microscope (AFM) tips and scanning tunnelling microscope (STM) needles using positive dielectrophoresis (DEP). The magnitude of the applied electric field was varied in the range of 1-20 V to investigate its effect on the dimensions of the assembled SWNT nanofibrils. Both length and diameter grew asymptotically as voltage increased from 5 to 18 V. Below 4 V, stable attachment of SWNT nanofibrils could not be achieved due to the relatively weak DEP force versus Brownian motion. At voltages of 20 V and higher, low quality nanofibrils resulted from incorporating large amounts of impurities. For intermediate voltages, optimal nanofibrils were achieved, though pivotal to this assembly is the wetting behaviour upon tip immersion in the SWNT suspension drop. This process was monitored in situ to correlate wetting angle and probe geometry (cone angles and tip height), revealing that probes with narrow cone angles and long shanks are optimal. It is proposed that this results from less wetting of the probe apex, and therefore reduces capillary forces and especially force transients during the nanofibril drawing process. Relatively rigid probes (force constant >= 2 N/m) exhibited no perceivable cantilever bending upon wetting and de-wetting, resulting in the most stable process control

    Even Galois Representations and the Fontaine--Mazur conjecture II

    Full text link
    We prove, under mild hypotheses, that there are no irreducible two-dimensional_even_ Galois representations of \Gal(\Qbar/\Q) which are de Rham with distinct Hodge--Tate weights. This removes the "ordinary" hypothesis required in previous work of the author. We construct examples of irreducible two-dimensional residual representations that have no characteristic zero geometric (= de Rham) deformations.Comment: Updated to take into account suggestions of the referee; the main theorems remain unchange

    Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime

    Full text link
    The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross phase modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schr\"odinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on non-linear interaction via double-EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:5050:50 beam splitter and two photodetectors. In order to show the entanglement of a generated entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section

    Near-Infrared Properties of Metal-poor Globular Clusters in the Galactic Bulge Direction

    Full text link
    Aims. J, H, and K' images obtained from the near-infrared imager CFHTIR on the Canada-France-Hawaii Telescope are used to derive the morphological parameters of the red giant branch (RGB) in the near-infrared color-magnitude diagrams for 12 metal-poor globular clusters in the Galactic bulge direction. Using the compiled data set of the RGB parameters for the observed 12 clusters, in addition to the previously studied 5 clusters, we discuss the properties of the RGB morphology for the clusters and compare them with the calibration relations for the metal-rich bulge clusters and the metal-poor halo clusters. Methods. The photometric RGB shape indices such as colors at fixed magnitudes of MK = MH = (-5.5, -5, -4, and -3), magnitudes at fixed colors of (J - K)o = (J - H)o = 0.7, and the RGB slope are measured from the fiducial normal points defined in the near- infrared color-magnitude diagrams for each cluster. The magnitudes of RGB bump and tip are also estimated from the differential and cumulative luminosity functions of the selected RGB stars. The derived RGB parameters have been used to examine the overall behaviors of the RGB morphology as a function of cluster metallicity. Results. The correlations between the near-infrared photometric RGB shape indices and the cluster metallicity for the programme clusters compare favorably with the previous observational calibration relations for metal-rich clusters in the Galactic bulge and the metal-poor halo clusters. The observed near-infrared magnitudes of the RGB bump and tip for the investigated clusters are also in accordance with the previous calibration relations for the Galactic bulge clusters.Comment: 12 pages, 9 figures, accepted for publication in Astronomy & Astrophysic
    • 

    corecore