1,305 research outputs found
Recommended from our members
Feasibility study and design concept for an orbiting ice-penetrating radar sounder to characterize in three-dimensions the Europan ice mantle down to (and including) any ice/ocean interface
This report presents a radar sounding model based on the range of current working hypotheses for the nature of Europa's icy shell.Institute for Geophysic
Spectral Degeneracies in the Totally Asymmetric Exclusion Process
We study the spectrum of the Markov matrix of the totally asymmetric
exclusion process (TASEP) on a one-dimensional periodic lattice at ARBITRARY
filling. Although the system does not possess obvious symmetries except
translation invariance, the spectrum presents many multiplets with degeneracies
of high order. This behaviour is explained by a hidden symmetry property of the
Bethe Ansatz. Combinatorial formulae for the orders of degeneracy and the
corresponding number of multiplets are derived and compared with numerical
results obtained from exact diagonalisation of small size systems. This
unexpected structure of the TASEP spectrum suggests the existence of an
underlying large invariance group.
Keywords: ASEP, Markov matrix, Bethe Ansatz, Symmetries.Comment: 19 pages, 1 figur
A Planck-scale axion and SU(2) Yang-Mills dynamics: Present acceleration and the fate of the photon
From the time of CMB decoupling onwards we investigate cosmological evolution
subject to a strongly interacting SU(2) gauge theory of Yang-Mills scale
eV (masquerading as the factor of the SM at
present). The viability of this postulate is discussed in view of cosmological
and (astro)particle physics bounds. The gauge theory is coupled to a spatially
homogeneous and ultra-light (Planck-scale) axion field. As first pointed out by
Frieman et al., such an axion is a viable candidate for quintessence, i.e.
dynamical dark energy, being associated with today's cosmological acceleration.
A prediction of an upper limit for the duration of the
epoch stretching from the present to the point where the photon starts to be
Meissner massive is obtained: billion years.Comment: v3: consequences of an error in evolution equation for coupling
rectified, only a minimal change in physics results, two refs. adde
Quantum Pumping and Quantized Magnetoresistance in a Hall Bar
We show how a dc current can be generated in a Hall bar without applying a
bias voltage. The Hall resistance that corresponds to this pumped current
is quantized, just as in the usual integer quantum Hall effect (IQHE). In
contrast with the IQHE, however, the longitudinal resistance does not
vanish on the plateaus, but equals the Hall resistance. We propose an
experimental geometry to measure the pumped current and verify the predicted
behavior of and .Comment: RevTeX, 3 figure
On The Mobile Behavior of Solid He at High Temperatures
We report studies of solid helium contained inside a torsional oscillator, at
temperatures between 1.07K and 1.87K. We grew single crystals inside the
oscillator using commercially pure He and He-He mixtures containing
100 ppm He. Crystals were grown at constant temperature and pressure on the
melting curve. At the end of the growth, the crystals were disordered,
following which they partially decoupled from the oscillator. The fraction of
the decoupled He mass was temperature and velocity dependent. Around 1K, the
decoupled mass fraction for crystals grown from the mixture reached a limiting
value of around 35%. In the case of crystals grown using commercially pure
He at temperatures below 1.3K, this fraction was much smaller. This
difference could possibly be associated with the roughening transition at the
solid-liquid interface.Comment: 15 pages, 6 figure
Asymmetric Fluid Criticality II: Finite-Size Scaling for Simulations
The vapor-liquid critical behavior of intrinsically asymmetric fluids is
studied in finite systems of linear dimensions, , focusing on periodic
boundary conditions, as appropriate for simulations. The recently propounded
``complete'' thermodynamic scaling theory incorporating pressure
mixing in the scaling fields as well as corrections to scaling
, is extended to finite , initially in a grand
canonical representation. The theory allows for a Yang-Yang anomaly in which,
when , the second temperature derivative,
, of the chemical potential along the phase
boundary, , diverges when T\to\Tc -. The finite-size
behavior of various special {\em critical loci} in the temperature-density or
plane, in particular, the -inflection susceptibility loci and the
-maximal loci -- derived from where -- is carefully elucidated and
shown to be of value in estimating \Tc and \rhoc. Concrete illustrations
are presented for the hard-core square-well fluid and for the restricted
primitive model electrolyte including an estimate of the correlation exponent
that confirms Ising-type character. The treatment is extended to the
canonical representation where further complications appear.Comment: 23 pages in the two-column format (including 13 figures) This is Part
II of the previous paper [arXiv:cond-mat/0212145
Abelian and Non-Abelian Induced Parity Breaking Terms at Finite Temperature
We compute the exact canonically induced parity breaking part of the
effective action for 2+1 massive fermions in particular Abelian and non Abelian
gauge field backgrounds. The method of computation resorts to the chiral
anomaly of the dimensionally reduced theory.Comment: 13 pages, RevTeX, no figure
Theory of coherent acoustic phonons in InGaN/GaN multi-quantum wells
A microscopic theory for the generation and propagation of coherent LA
phonons in pseudomorphically strained wurzite (0001) InGaN/GaN multi-quantum
well (MQW) p-i-n diodes is presented. The generation of coherent LA phonons is
driven by photoexcitation of electron-hole pairs by an ultrafast Gaussian pump
laser and is treated theoretically using the density matrix formalism. We use
realistic wurzite bandstructures taking valence-band mixing and strain-induced
piezo- electric fields into account. In addition, the many-body Coulomb
ineraction is treated in the screened time-dependent Hartree-Fock
approximation. We find that under typical experimental conditions, our
microscopic theory can be simplified and mapped onto a loaded string problem
which can be easily solved.Comment: 20 pages, 17 figure
Mesoscopic Fano Effect in a Quantum Dot Embedded in an Aharonov-Bohm Ring
The Fano effect, which occurs through the quantum-mechanical cooperation
between resonance and interference, can be observed in electron transport
through a hybrid system of a quantum dot and an Aharonov-Bohm ring. While a
clear correlation appears between the height of the Coulomb peak and the real
asymmetric parameter for the corresponding Fano lineshape, we need to
introduce a complex to describe the variation of the lineshape by the
magnetic and electrostatic fields. The present analysis demonstrates that the
Fano effect with complex asymmetric parameters provides a good probe to detect
a quantum-mechanical phase of traversing electrons.Comment: REVTEX, 9 pages including 8 figure
Quantum spin pumping with adiabatically modulated magnetic barrier's
A quantum pump device involving magnetic barriers produced by the deposition
of ferro magnetic stripes on hetero-structure's is investigated. The device for
dc- transport does not provide spin-polarized currents, but in the adiabatic
regime, when one modulates two independent parameters of this device, spin-up
and spin-down electrons are driven in opposite directions, with the net result
being that a finite net spin current is transported with negligible charge
current. We also analyze our proposed device for inelastic-scattering and
spin-orbit scattering. Strong spin-orbit scattering and more so inelastic
scattering have a somewhat detrimental effect on spin/charge ratio especially
in the strong pumping regime. Further we show our pump to be almost noiseless,
implying an optimal quantum spin pump.Comment: 14 pages, 9 figures. Manuscript revised with additional new material
on spin-orbit scattering and inelastic scattering. Further new additions on
noiseless pumping and analytical results with distinction between weak and
strong pumping regimes. Accepted for publication in Physical Review
- …
