494 research outputs found

    Substrate-tuning of correlated spin-orbit oxides revealed by optical conductivity calculations

    Get PDF
    We have systematically investigated substrate-strain effects on the electronic structures of two representative Sr-iridates, a correlated-insulator Sr2IrO4 and a metal SrIrO3. Optical conductivities obtained by the ab initio electronic structure calculations reveal that the tensile strain shifts the optical peak positions to higher energy side with altered intensities, suggesting the enhancement of the electronic correlation and spin-orbit coupling (SOC) strength in Sr-iridates. The response of the electronic structure upon tensile strain is found to be highly correlated with the direction of magnetic moment, the octahedral connectivity, and the SOC strength, which cooperatively determine the robustness of J(eff) = 1/2 ground states. Optical responses are analyzed also with microscopic model calculation and compared with corresponding experiments. In the case of SrIrO3, the evolution of the electronic structure near the Fermi level shows high tunability of hole bands, as suggested by previous experiments.117Ysciescopu

    Coulomb drag as a signature of the paired quantum Hall state

    Full text link
    Motivated by the recent Coulomb drag experiment of M. P. Lilly et. al, we study the Coulomb drag in a two-layer system with Landau level filling factor ν=1/2\nu=1/2. We find that the drag conductivity in the incompressible paired quantum Hall state at zero temperature can be finite. The drag conductivity is also greatly enhanced above TcT_c, at which the transition between the weakly coupled compressible liquids and the paired quantum Hall liquid takes place. We discuss the implications of our results for the recent experiment.Comment: 4 pages, 1 figure included, replaced by the published versio

    Electronic structures of La3_3S4_4 and Ce3_3S4_4

    Full text link
    We have investigated electronic structures of La3_3S4_4 and Ce3_3S4_4 using the LSDA and LSDA+UU methods. Calculated density of states (DOS) are compared with the experimental DOS obtained by the valence band photoemission spectroscopy. The DOS at EFE_{\rm{F}} indicates the 5dd character in La3_3S4_4 and 4ff character in Ce3_3S4_4. It is found to be nearly half metallic in the ferromagnetic ground state of Ce3_3S4_4. %Ce3_3S4_4 has ferromagnetic ground states with spin and orbital magnetic %moments of 1.27 μB\mu_{\rm{B}} and -2.81 μB\mu_{\rm{B}} per Ce, respectively, %and shows nearly half metallic ground state. We discuss the superconductivity and structural transition in La3_3S4_4, and the absence of structural transition in Ce3_3S4_4.Comment: Transport and Thermal Properties of Advanced Materials(Aug. 2002; Hiroshima, Japan

    Onset of Collective Oscillation in Chemical Turbulence under Global Feedback

    Full text link
    Preceding the complete suppression of chemical turbulence by means of global feedback, a different universal type of transition, which is characterized by the emergence of small-amplitude collective oscillation with strong turbulent background, is shown to occur at much weaker feedback intensity. We illustrate this fact numerically in combination with a phenomenological argument based on the complex Ginzburg-Landau equation with global feedback.Comment: 6 pages, 8 figures; to appear in Phys. Rev.

    Critical scaling of the a.c. conductivity for a superconductor above Tc

    Full text link
    We consider the effects of critical superconducting fluctuations on the scaling of the linear a.c. conductivity, \sigma(\omega), of a bulk superconductor slightly above Tc in zero applied magnetic field. The dynamic renormalization- group method is applied to the relaxational time-dependent Ginzburg-Landau model of superconductivity, with \sigma(\omega) calculated via the Kubo formula to O(\epsilon^{2}) in the \epsilon = 4 - d expansion. The critical dynamics are governed by the relaxational XY-model renormalization-group fixed point. The scaling hypothesis \sigma(\omega) \sim \xi^{2-d+z} S(\omega \xi^{z}) proposed by Fisher, Fisher and Huse is explicitly verified, with the dynamic exponent z \approx 2.015, the value expected for the d=3 relaxational XY-model. The universal scaling function S(y) is computed and shown to deviate only slightly from its Gaussian form, calculated earlier. The present theory is compared with experimental measurements of the a.c. conductivity of YBCO near Tc, and the implications of this theory for such experiments is discussed.Comment: 16 pages, submitted to Phys. Rev.

    Harmonic forcing of an extended oscillatory system: Homogeneous and periodic solutions

    Full text link
    In this paper we study the effect of external harmonic forcing on a one-dimensional oscillatory system described by the complex Ginzburg-Landau equation (CGLE). For a sufficiently large forcing amplitude, a homogeneous state with no spatial structure is observed. The state becomes unstable to a spatially periodic ``stripe'' state via a supercritical bifurcation as the forcing amplitude decreases. An approximate phase equation is derived, and an analytic solution for the stripe state is obtained, through which the asymmetric behavior of the stability border of the state is explained. The phase equation, in particular the analytic solution, is found to be very useful in understanding the stability borders of the homogeneous and stripe states of the forced CGLE.Comment: 6 pages, 4 figures, 2 column revtex format, to be published in Phys. Rev.

    Spin symmetry breaking in bilayer quantum Hall systems

    Full text link
    Based on the construction of generalized Halperin wave functions, we predict the possible existence of a large class of broken spin symmetry states in bilayer quantum Hall structures, generalizing the recently suggested canted antiferromgnetic phase to many fractional fillings. We develop the appropriate Chern-Simons theory, and establish explicitly that the low-lying neutral excitation is a Goldstone mode and that the charged excitations are bimerons with continuously tunable (through the canted antiferromagnetic order parameter) electric charge on the individual merons.Comment: 4 page

    Finite Size and Current Effects on IV Characteristics of Josephson Junction Arrays

    Full text link
    The effects of finite size and of finite current on the current-voltage characteristics of Josephson junction arrays is studied both theoretically and by numerical simulations. The cross-over from non-linear to linear behavior at low temperature is shown to be a finite size effect and the non-linear behavior at higher temperature, T>TKTT>T_{KT}, is shown to be a finite current effect. These are argued to result from competition between the three length scales characterizing the system. The importance of boundary effects is discussed and it is shown that these may dominate the behavior in small arrays.Comment: 5 pages, figures included, to appear in PR

    Self-consistent calculation of total energies of the electron gas using many-body perturbation theory

    Get PDF
    The performance of many-body perturbation theory for calculating ground-state properties is investigated. We present fully numerical results for the electron gas in three and two dimensions in the framework of the GW approximation. The overall agreement with very accurate Monte Carlo data is excellent, even for those ranges of densities for which the GW approach is often supposed to be unsuitable. The latter seems to be due to the fulfillment of general conservation rules. These results open further prospects for accurate calculations of ground-state properties circumventing the limitations of standard density-functional theory
    corecore