5,615 research outputs found

    Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference

    Full text link
    We report experimental verification of the commutation relation for Pauli spin operators using quantum interference of the single-photon polarization state. By superposing the quantum operations σzσx\sigma_z \sigma_x and σxσz\sigma_x \sigma_z on a single-photon polarization state, we have experimentally implemented the commutator, [σz,σx][\sigma_{z}, \sigma_{x}], and the anticommutator, {σz,σx}\{\sigma_{z}, \sigma_{x}\}, and have demonstrated the relative phase factor of π\pi between σzσx\sigma_z \sigma_x and σxσz\sigma_x \sigma_z operations. The experimental quantum operation corresponding to the commutator, [σz,σx]=kσy[\sigma_{z}, \sigma_{x}]=k\sigma_y, showed process fidelity of 0.94 compared to the ideal σy\sigma_y operation and k|k| is determined to be 2.12±0.182.12\pm0.18.Comment: 4pages, 3 figure

    Realizing Physical Approximation of the Partial Transpose

    Full text link
    The partial transpose by which a subsystem's quantum state is solely transposed is of unique importance in quantum information processing from both fundamental and practical point of view. In this work, we present a practical scheme to realize a physical approximation to the partial transpose using local measurements on individual quantum systems and classical communication. We then report its linear optical realization and show that the scheme works with no dependence on local basis of given quantum states. A proof-of-principle demonstration of entanglement detection using the physical approximation of the partial transpose is also reported.Comment: 5 pages with appendix, 3 figure

    Experimental Implementation of the Universal Transpose Operation

    Full text link
    The universal transpose of quantum states is an anti-unitary transformation that is not allowed in quantum theory. In this work, we investigate approximating the universal transpose of quantum states of two-level systems (qubits) using the method known as the structural physical approximation to positive maps. We also report its experimental implementation in linear optics. The scheme is optimal in that the maximal fidelity is attained and also practical as measurement and preparation of quantum states that are experimentally feasible within current technologies are solely applied.Comment: 4 pages, 4 figure

    Monoclinic and Correlated Metal Phase in VO_2 as Evidence of the Mott Transition: Coherent Phonon Analysis

    Full text link
    In femtosecond pump-probe measurements, the appearance of coherent phonon oscillations at 4.5 THz and 6.0 THz indicating the rutile metal phase of VO_2 does not occur simultaneously with the first-order metal-insulator transition (MIT) near 68^oC. The monoclinic and correlated metal(MCM) phase between the MIT and the structural phase transition (SPT) is generated by a photo-assisted hole excitation which is evidence of the Mott transition. The SPT between the MCM phase and the rutile metal phase occurs due to subsequent Joule heating. The MCM phase can be regarded as an intermediate non-equilibrium state.Comment: 4 pages, 2 figure

    Observation of First-Order Metal-Insulator Transition without Structural Phase Transition in VO_2

    Full text link
    An abrupt first-order metal-insulator transition (MIT) without structural phase transition is first observed by current-voltage measurements and micro-Raman scattering experiments, when a DC electric field is applied to a Mott insulator VO_2 based two-terminal device. An abrupt current jump is measured at a critical electric field. The Raman-shift frequency and the bandwidth of the most predominant Raman-active A_g mode, excited by the electric field, do not change through the abrupt MIT, while, they, excited by temperature, pronouncedly soften and damp (structural MIT), respectively. This structural MIT is found to occur secondarily.Comment: 4 pages, 4 figure

    Comparative effects of norepinephrine and vasopressin on internal thoracic arterial graft flow after off-pump coronary artery bypass grafting

    Get PDF
    ObjectiveVasoconstrictors such as norepinephrine and vasopressin are commonly used to raise the blood pressure during myocardial revascularization. The internal thoracic artery is commonly used for coronary artery grafting because of its long-term patency. However, the internal thoracic artery is a living conduit that responds to vasoactive substances. The objective of this study was to measure change in internal thoracic arterial flow after infusion of norepinephrine or vasopressin.MethodsForty-one patients undergoing elective off-pump coronary artery bypass grafting participated in this study. After the median sternotomy, the left internal thoracic artery was dissected with a pedicle and grafted to the left anterior descending artery. After all anastomoses were performed and hemodynamic parameters were stable, the grafted internal thoracic arterial blood flow was measured by transit time flowmeter on the distal portion of the graft as a baseline. Norepinephrine or vasopressin was then infused until mean arterial pressure was increased to 20% of baseline. Graft flow and hemodynamic variables were measured when mean arterial pressure reached the intended level.ResultsBaseline grafted internal thoracic arterial flows were similar (norepinephrine 57.1 ± 17.7 mL min−1, vasopressin 66.0 ± 34.3 mL min−1). With norepinephrine, flow increased significantly relative to baseline (77.2 ± 31.0 mL min−1); with vasopressin, it remained unchanged (68.3 ± 37.0 mL min−1).ConclusionsFor patients needing vasopressor support after coronary artery bypass grafting, norepinephrine appeared superior to vasopressin because of increased internal thoracic arterial flow
    corecore