8,019 research outputs found

    Numerical Sensitivity Tests of Volatile Organic Compounds Emission to PM2.5 Formation during Heat Wave Period in 2018 in Two Southeast Korean Cities

    Get PDF
    A record-breaking severe heat wave was recorded in southeast Korea from 11 July to 15 August 2018, and the numerical sensitivity simulations of volatile organic compound (VOC) to secondarily generated particulate matter with diameter of less than 2.5 mu m (PM2.5) concentrations were studied in the Busan and Ulsan metropolitan areas in southeast Korea. A weather research and forecasting (WRF) model coupled with chemistry (WRF-Chem) was employed, and we carried out VOC emission sensitivity simulations to investigate variations in PM2.5 concentrations during the heat wave period that occurred from 11 July to 15 August 2018. In our study, when anthropogenic VOC emissions from the Comprehensive Regional Emissions Inventory for Atmospheric Transport Experiment-2015 (CREATE-2015) inventory were increased by approximately a factor of five in southeast Korea, a better agreement with observations of PM2.5 mass concentrations was simulated, implying an underestimation of anthropogenic VOC emissions over southeast Korea. The simulated secondary organic aerosol (SOA) fraction, in particular, showed greater dominance during high temperature periods such as 19-21 July, 2018, with the SOA fractions of 42.3% (in Busan) and 34.3% (in Ulsan) among a sub-total of seven inorganic and organic components. This is considerably higher than observed annual mean organic carbon (OC) fraction (28.4 +/- 4%) among seven components, indicating the enhancement of secondary organic aerosols induced by photochemical reactions during the heat wave period in both metropolitan areas. The PM2.5 to PM10 ratios were 0.69 and 0.74, on average, during the study period in the two cities. These were also significantly higher than the typical range in those cities, which was 0.5-0.6 in 2018. Our simulations implied that extremely high temperatures with no precipitation are significantly important to the secondary generation of PM2.5 with higher secondary organic aerosol fraction via photochemical reactions in southeastern Korean cities. Other possible relationships between anthropogenic VOC emissions and temperature during the heat wave episode are also discussed in this study

    Proto-Model of an Infrared Wide-Field Off-Axis Telescope

    Full text link
    We develop a proto-model of an off-axis reflective telescope for infrared wide-field observations based on the design of Schwarzschild-Chang type telescope. With only two mirrors, this design achieves an entrance pupil diameter of 50 mm and an effective focal length of 100 mm. We can apply this design to a mid-infrared telescope with a field of view of 8 deg X 8 deg. In spite of the substantial advantages of off-axis telescopes in the infrared compared to refractive or on-axis reflective telescopes, it is known to be difficult to align the mirrors in off-axis systems because of their asymmetric structures. Off-axis mirrors of our telescope are manufactured at the Korea Basic Science Institute (KBSI). We analyze the fabricated mirror surfaces by fitting polynomial functions to the measured data. We accomplish alignment of this two-mirror off-axis system using a ray tracing method. A simple imaging test is performed to compare a pinhole image with a simulated prediction.Comment: 14 pages, 16 figure

    Iterative algorithms for partitioned neural network approximation to partial differential equations

    Full text link
    To enhance solution accuracy and training efficiency in neural network approximation to partial differential equations, partitioned neural networks can be used as a solution surrogate instead of a single large and deep neural network defined on the whole problem domain. In such a partitioned neural network approach, suitable interface conditions or subdomain boundary conditions are combined to obtain a convergent approximate solution. However, there has been no rigorous study on the convergence and parallel computing enhancement on the partitioned neural network approach. In this paper, iterative algorithms are proposed to address these issues. Our algorithms are based on classical additive Schwarz domain decomposition methods. Numerical results are included to show the performance of the proposed iterative algorithms

    One-pot Enzymatic Synthesis of Deoxy-thymidine-diphosphate (TDP)-2-deoxy-∝-d-glucose Using Phosphomannomutase

    Full text link
    Production of deoxy-thymidine-diphosphate (TDP)-sugars as substrates of glycosyltransferases, has been one of main hurdles for combinatorial antibiotic biosynthesis, which combines sugar moiety with aglycon of various antibiotics. Here, we report the one-pot enzymatic synthesis of TDP-2-deoxy-glucose employing high efficient TMP kinase (TMK; E.C. 2.7.2.12), acetate kinase (ACK; E.C. 2.7.1.21), and TDP-glucose synthase (TGS; E.C. 2.7.7.24) with phosphomannomutase (PMM; E.C. 5.4.2.8). In this study, replacing phosphoglucomutase (PGM; E.C. 5.4.2) by PMM from Escherichia coli gave four times higher specific activity on 2-deoxy-6-phosphate glucose, suggesting that the activity on 2-deoxy-glucose-6-phosphate was mainly affected by PMM activity, not PGM activity. Using an in vitro system starting from TMP and 2-deoxy-glucose-6-phosphate glucose, TDP-2-deoxy-glucose (63% yield) was successfully synthesized. Considering low productivity of NDP-sugars from cheap starting materials, this paper showed how production of NDP-sugars could be enhanced by controlling mutase activity

    Teachers’ Monitoring and Schools’ Performance: Evidence from Public Schools in Pakistan

    Get PDF
    This paper evaluates the impact of an innovative monitoring system on teacher attendance and school performance in Pakistan. In 2014, the government in Khyber Pakhtunkhwa province introduced the Independent Monitoring Project aiming at increasing teacher attendance in primary and secondary public schools by distributing to the government-hired monitors smart phones with a special data collection software installed. Our analysis is based on a difference-in-differences approach using the country wide Annual Status of Education Report from 2012 to 2016. Our findings suggest that monitoring of government schools has increased teacher attendance by 7.5 percentage points in the first year of intervention. But the positive effect wears off to 2.7 percentage points in the second year. Child attendance and test scores also increased in the first year, but in the second year they disappeared. Especially, in the first year, the monitoring system improved students’ math, reading, and English test scores by 0.13, 0.14, and 0.15 standard deviation, respectively, if they are grades 1-5. This result suggests that teacher attendance has an important role in delivering better student outcomes, but that monitoring should be coupled with appropriate incentive mechanism in order to have a lasting impact

    Labor Productivity In Emerging Markets: Evidence From Brazil, China, India, And Russia (BRIC)

    Get PDF
    Despite the great amount of attention to emerging markets, much still remains unknown about firm performance in emerging economies. To fill this gap, this study aims to investigate factors that influence labor productivity of firms in Brazil, China, India, and Russia (BRIC countries). This study focuses on features of business environments of emerging markets such as informality, corruption, foreign ownership, and external audit. Using a cross-national sample of 8,885 firms from the World Bank Enterprise Surveys dataset, we find that informality is negatively associated with labor productivity, while corruption and external audit are positively related to labor productivity. Implications will be discussed

    Spatially resolved penetration depth measurements and vortex manipulation in the ferromagnetic superconductor ErNi2B2C

    Get PDF
    We present a local probe study of the magnetic superconductor, ErNi2_2B2_2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi2_2B2_2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth λ\lambda and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. In addition, we estimate the absolute pinning force of Abrikosov vortices, which shows a position- and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation
    corecore