60 research outputs found

    Cholangiolocellular carcinoma with satellite nodules showing intermediate differentiation

    Get PDF

    Biliary intraepithelial neoplasia: a case with benign biliary stricture

    Get PDF

    Accelerating Number Theoretic Transformations for Bootstrappable Homomorphic Encryption on GPUs

    Full text link
    Homomorphic encryption (HE) draws huge attention as it provides a way of privacy-preserving computations on encrypted messages. Number Theoretic Transform (NTT), a specialized form of Discrete Fourier Transform (DFT) in the finite field of integers, is the key algorithm that enables fast computation on encrypted ciphertexts in HE. Prior works have accelerated NTT and its inverse transformation on a popular parallel processing platform, GPU, by leveraging DFT optimization techniques. However, these GPU-based studies lack a comprehensive analysis of the primary differences between NTT and DFT or only consider small HE parameters that have tight constraints in the number of arithmetic operations that can be performed without decryption. In this paper, we analyze the algorithmic characteristics of NTT and DFT and assess the performance of NTT when we apply the optimizations that are commonly applicable to both DFT and NTT on modern GPUs. From the analysis, we identify that NTT suffers from severe main-memory bandwidth bottleneck on large HE parameter sets. To tackle the main-memory bandwidth issue, we propose a novel NTT-specific on-the-fly root generation scheme dubbed on-the-fly twiddling (OT). Compared to the baseline radix-2 NTT implementation, after applying all the optimizations, including OT, we achieve 4.2x speedup on a modern GPU.Comment: 12 pages, 13 figures, to appear in IISWC 202

    Learning Semantic Correspondence Exploiting an Object-level Prior

    Get PDF
    We address the problem of semantic correspondence, that is, establishing a dense flow field between images depicting different instances of the same object or scene category. We propose to use images annotated with binary foreground masks and subjected to synthetic geometric deformations to train a convolutional neural network (CNN) for this task. Using these masks as part of the supervisory signal provides an object-level prior for the semantic correspondence task and offers a good compromise between semantic flow methods, where the amount of training data is limited by the cost of manually selecting point correspondences, and semantic alignment ones, where the regression of a single global geometric transformation between images may be sensitive to image-specific details such as background clutter. We propose a new CNN architecture, dubbed SFNet, which implements this idea. It leverages a new and differentiable version of the argmax function for end-to-end training, with a loss that combines mask and flow consistency with smoothness terms. Experimental results demonstrate the effectiveness of our approach, which significantly outperforms the state of the art on standard benchmarks

    Toward Practical Privacy-Preserving Convolutional Neural Networks Exploiting Fully Homomorphic Encryption

    Full text link
    Incorporating fully homomorphic encryption (FHE) into the inference process of a convolutional neural network (CNN) draws enormous attention as a viable approach for achieving private inference (PI). FHE allows delegating the entire computation process to the server while ensuring the confidentiality of sensitive client-side data. However, practical FHE implementation of a CNN faces significant hurdles, primarily due to FHE's substantial computational and memory overhead. To address these challenges, we propose a set of optimizations, which includes GPU/ASIC acceleration, an efficient activation function, and an optimized packing scheme. We evaluate our method using the ResNet models on the CIFAR-10 and ImageNet datasets, achieving several orders of magnitude improvement compared to prior work and reducing the latency of the encrypted CNN inference to 1.4 seconds on an NVIDIA A100 GPU. We also show that the latency drops to a mere 0.03 seconds with a custom hardware design.Comment: 3 pages, 1 figure, appears at DISCC 2023 (2nd Workshop on Data Integrity and Secure Cloud Computing, in conjunction with the 56th International Symposium on Microarchitecture (MICRO 2023)

    Learning Semantic Correspondence Exploiting an Object-level Prior

    Get PDF
    International audienceWe address the problem of semantic correspondence, that is, establishing a dense flow field between images depicting different instances of the same object or scene category. We propose to use images annotated with binary foreground masks and subjected to synthetic geometric deformations to train a convolutional neural network (CNN) for this task. Using these masks as part of the supervisory signal provides an object-level prior for the semantic correspondence task and offers a good compromise between semantic flow methods, where the amount of training data is limited by the cost of manually selecting point correspondences, and semantic alignment ones, where the regression of a single global geometric transformation between images may be sensitive to image-specific details such as background clutter. We propose a new CNN architecture, dubbed SFNet, which implements this idea. It leverages a new and differentiable version of the argmax function for end-to-end training, with a loss that combines mask and flow consistency with smoothness terms. Experimental results demonstrate the effectiveness of our approach, which significantly outperforms the state of the art on standard benchmarks

    The prM-independent packaging of pseudotyped Japanese encephalitis virus

    Get PDF
    As noted in other flaviviruses, the envelope (E) protein of Japanese encephalitis virus (JEV) interacts with a cellular receptor and mediates membrane fusion to allow viral entry into target cells, thus eliciting neutralizing antibody response. The formation of the flavivirus prM/E complex is followed by the cleavage of precursor membrane (prM) and membrane (M) protein by a cellular signalase. To test the effect of prM in JEV biology, we constucted JEV-MuLV pseudotyped viruses that express the prM/E protein or E only. The infectivity and titers of JEV pseudotyped viruses were examined in several cell lines. We also analyzed the neutralizing capacities with anti-JEV sera from JEV-immunized mice. Even though prM is crucial for multiple stages of JEV biology, the JEV-pseudotyped viruses produced with prM/E or with E only showed similar infectivity and titers in several cell lines and similar neutralizing sensitivity. These results showed that JEV-MuLV pseudotyped viruses did not require prM for production of infectious pseudotyped viruses
    • …
    corecore