5 research outputs found

    Revealing User Familiarity Bias in Task-Oriented Dialogue via Interactive Evaluation

    Full text link
    Most task-oriented dialogue (TOD) benchmarks assume users that know exactly how to use the system by constraining the user behaviors within the system's capabilities via strict user goals, namely "user familiarity" bias. This data bias deepens when it combines with data-driven TOD systems, as it is impossible to fathom the effect of it with existing static evaluations. Hence, we conduct an interactive user study to unveil how vulnerable TOD systems are against realistic scenarios. In particular, we compare users with 1) detailed goal instructions that conform to the system boundaries (closed-goal) and 2) vague goal instructions that are often unsupported but realistic (open-goal). Our study reveals that conversations in open-goal settings lead to catastrophic failures of the system, in which 92% of the dialogues had significant issues. Moreover, we conduct a thorough analysis to identify distinctive features between the two settings through error annotation. From this, we discover a novel "pretending" behavior, in which the system pretends to handle the user requests even though they are beyond the system's capabilities. We discuss its characteristics and toxicity while emphasizing transparency and a fallback strategy for robust TOD systems

    DSTEA: Improving Dialogue State Tracking via Entity Adaptive Pre-training

    Full text link
    Dialogue State Tracking (DST) is critical for comprehensively interpreting user and system utterances, thereby forming the cornerstone of efficient dialogue systems. Despite past research efforts focused on enhancing DST performance through alterations to the model structure or integrating additional features like graph relations, they often require additional pre-training with external dialogue corpora. In this study, we propose DSTEA, improving Dialogue State Tracking via Entity Adaptive pre-training, which can enhance the encoder through by intensively training key entities in dialogue utterances. DSTEA identifies these pivotal entities from input dialogues utilizing four different methods: ontology information, named-entity recognition, the spaCy, and the flair library. Subsequently, it employs selective knowledge masking to train the model effectively. Remarkably, DSTEA only requires pre-training without the direct infusion of extra knowledge into the DST model. This approach resulted in substantial performance improvements of four robust DST models on MultiWOZ 2.0, 2.1, and 2.2, with joint goal accuracy witnessing an increase of up to 2.69% (from 52.41% to 55.10%). Further validation of DSTEA's efficacy was provided through comparative experiments considering various entity types and different entity adaptive pre-training configurations such as masking strategy and masking rate

    KoSBi: A Dataset for Mitigating Social Bias Risks Towards Safer Large Language Model Application

    Full text link
    Large language models (LLMs) learn not only natural text generation abilities but also social biases against different demographic groups from real-world data. This poses a critical risk when deploying LLM-based applications. Existing research and resources are not readily applicable in South Korea due to the differences in language and culture, both of which significantly affect the biases and targeted demographic groups. This limitation requires localized social bias datasets to ensure the safe and effective deployment of LLMs. To this end, we present KO SB I, a new social bias dataset of 34k pairs of contexts and sentences in Korean covering 72 demographic groups in 15 categories. We find that through filtering-based moderation, social biases in generated content can be reduced by 16.47%p on average for HyperCLOVA (30B and 82B), and GPT-3.Comment: 17 pages, 8 figures, 12 tables, ACL 202

    SQuARe: A Large-Scale Dataset of Sensitive Questions and Acceptable Responses Created Through Human-Machine Collaboration

    Full text link
    The potential social harms that large language models pose, such as generating offensive content and reinforcing biases, are steeply rising. Existing works focus on coping with this concern while interacting with ill-intentioned users, such as those who explicitly make hate speech or elicit harmful responses. However, discussions on sensitive issues can become toxic even if the users are well-intentioned. For safer models in such scenarios, we present the Sensitive Questions and Acceptable Response (SQuARe) dataset, a large-scale Korean dataset of 49k sensitive questions with 42k acceptable and 46k non-acceptable responses. The dataset was constructed leveraging HyperCLOVA in a human-in-the-loop manner based on real news headlines. Experiments show that acceptable response generation significantly improves for HyperCLOVA and GPT-3, demonstrating the efficacy of this dataset.Comment: 19 pages, 10 figures, ACL 202
    corecore