123 research outputs found

    Amine-Functionalized Covalent Organic Framework for Efficient SO2 Capture with High Reversibility

    Get PDF
    Removing sulfur dioxide (SO2) from exhaust flue gases of fossil fuel power plants is an important issue given the toxicity of SO2 and subsequent environmental problems. To address this issue, we successfully developed a new series of imide-linked covalent organic frameworks (COFs) that have high mesoporosity with large surface areas to support gas flowing through channels; furthermore, we incorporated 4-[(dimethylamino)methyl]aniline (DMMA) as the modulator to the imide-linked COF. We observed that the functionalized COFs serving as SO2 adsorbents exhibit outstanding molar SO2 sorption capacity, i.e., PI-COF-m10 record 6.30 mmol SO2 gβˆ’1 (40 wt%). To our knowledge, it is firstly reported COF as SO2 sorbent to date. We also observed that the adsorbed SO2 is completely desorbed in a short time period with remarkable reversibility. These results suggest that channel-wall functional engineering could be a facile and powerful strategy for developing mesoporous COFs for high-performance reproducible gas storage and separation.113Ysciescopu

    Non-Coding RNAs: Functional Aspects and Diagnostic Utility in Oncology

    Get PDF
    Noncoding RNAs (ncRNAs) have been found to have roles in a large variety of biological processes. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined, holding great promise for use in diagnostic, prognostic, and therapeutic applications. Within ncRNAs, microRNAs (miRNAs) are the most widely studied and characterized. They have been implicated in initiation and progression of a variety of human malignancies, including major pathologies such as cancers, arthritis, neurodegenerative disorders, and cardiovascular diseases. Their surprising stability in serum and other bodily fluids led to their rapid ascent as a novel class of biomarkers. For example, several properties of stable miRNAs, and perhaps other classes of ncRNAs, make them good candidate biomarkers for early cancer detection and for determining which preneoplastic lesions are likely to progress to cancer. Of particular interest is the identification of biomarker signatures, which may include traditional protein-based biomarkers, to improve risk assessment, detection, and prognosis. Here, we offer a comprehensive review of the ncRNA biomarker literature and discuss state-of-the-art technologies for their detection. Furthermore, we address the challenges present in miRNA detection and quantification, and outline future perspectives for development of next-generation biodetection assays employing multicolor alternating-laser excitation (ALEX) fluorescence spectroscopy

    Non-Coding RNAs: Functional Aspects and Diagnostic Utility in Oncology

    Get PDF
    Noncoding RNAs (ncRNAs) have been found to have roles in a large variety of biological processes. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined, holding great promise for use in diagnostic, prognostic, and therapeutic applications. Within ncRNAs, microRNAs (miRNAs) are the most widely studied and characterized. They have been implicated in initiation and progression of a variety of human malignancies, including major pathologies such as cancers, arthritis, neurodegenerative disorders, and cardiovascular diseases. Their surprising stability in serum and other bodily fluids led to their rapid ascent as a novel class of biomarkers. For example, several properties of stable miRNAs, and perhaps other classes of ncRNAs, make them good candidate biomarkers for early cancer detection and for determining which preneoplastic lesions are likely to progress to cancer. Of particular interest is the identification of biomarker signatures, which may include traditional protein-based biomarkers, to improve risk assessment, detection, and prognosis. Here, we offer a comprehensive review of the ncRNA biomarker literature and discuss state-of-the-art technologies for their detection. Furthermore, we address the challenges present in miRNA detection and quantification, and outline future perspectives for development of next-generation biodetection assays employing multicolor alternating-laser excitation (ALEX) fluorescence spectroscopy

    Boosting thermal stability of perovskite solar cells by introducing Al2O3 metal oxide

    No full text
    2
    • …
    corecore