35 research outputs found

    The Effects of Extremely Low-Frequency Magnetic Fields on Reproductive Function in Rodents

    Get PDF
    Extremely low-frequency electromagnetic fields (ELF-EMF) are defined as those having frequencies up to 300 Hz, representing a non-ionising radiation having photon energy too weak to interact with biomolecular systems. Exposure to low-frequency electric field and magnetic field (MF) generally results in negligible energy absorption in the body. However, it is well established that ELF-MF induces biologic effects in various cellular functions. ELF-MF acting as a co-inducer can potentiate weak mutagenic signalling. The concern about possible adverse effects on human health of long-term exposure to ELF-MFs, especially at frequencies of 50 or 60 Hz generated from power lines and electric devices, has been increasing. Conversely, long-term effects of chronic exposure have been excluded from the scope of the guidelines of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) because of insufficient consistent scientific evidence to fix the thresholds for such possible biological effects. The results regarding the adverse effects of ELF-MF on human or animal reproductive functions are contradictory or inconclusive. Overall conclusion of epidemiologic studies on ambient residential MF exposure consistently failed to establish a link between human adverse reproductive outcomes and chronic maternal or paternal exposure to low-frequency MFs. In animal studies, there is no compelling evidence for a causal relationship between disturbed prenatal development and ELF-MF exposure. Testicular spermatogenesis progresses through a complexly regulated cellular process involving mitosis and meiosis; this process seems to be vulnerable to external stressors, such as heat, MF exposure or chemical and physical agents. Exposure to ELF-MF did significant risk impaired implantation or the foetal development in animal studies. However, there is some consistency in the increase of minor skeletal alterations in animal experiments. The evidence derived from recent studies in male mice demonstrates that ELF-MF exposure is involved with an increase in the frequency of apoptosis in spermatogenic cells. Those results suggest that exposure to MF is related to possible cytogenetic effects on testicular germ cells and therefore may negatively affect reproduction. This chapter intends to present an overview on the effects of ELF-EMF exposure on the reproductive function and a plausible mechanism in rodent species

    Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    Get PDF
    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample

    Clinical Evaluation of Rapid Diagnostic Test Kit Using the Polysaccharide as a Genus-Specific Diagnostic Antigen for Leptospirosis in Korea, Bulgaria, and Argentina

    Get PDF
    Leptospirosis, a zoonotic disease that is caused by many serovars which are more than 200 in the world, is an emerging worldwide disease. Accurate and rapid diagnostic tests for leptospirosis are a critical step to diagnose the disease. There are some commercial kits available for diagnosis of leptospirosis, but the obscurity of a species- or genus-specific antigen of pathogenic Leptospira interrogans causes the reduced sensitivity and specificity. In this study, the polysaccharide derived from lipopolysaccharide (LPS) of nonpathogenic Leptospira biflexa serovar patoc was prepared, and the antigenicity was confirmed by immunoblot and enzyme linked immunosorbent assay (ELISA). The performance of the rapid diagnostic test (RDT) kit using the polysaccharide as a diagnostic antigen was evaluated in Korea, Bulgaria and Argentina. The sensitivity was 93.9%, 100%, and 81.0% and the specificity was 97.9%, 100%, and 95.4% in Korea (which is a rare region occurring with 2 serovars mostly), Bulgaria (epidemic region with 3 serovars chiefly) and Argentina (endemic region with 19 serovars mainly) respectively. These results indicate that this RDT is applicable for global diagnosis of leptospirosis. This rapid and effective diagnosis will be helpful for diagnosis and manage of leptospirosis to use and the polysaccharide of Leptospira may be called as genus specific antigen for diagnosis

    Perpendicular Magnetic Anisotropy in FePt Patterned Media Employing a CrV Seed Layer

    Get PDF
    A thin FePt film was deposited onto a CrV seed layer at 400°C and showed a high coercivity (~3,400 Oe) and high magnetization (900–1,000 emu/cm3) characteristic of L10 phase. However, the magnetic properties of patterned media fabricated from the film stack were degraded due to the Ar-ion bombardment. We employed a deposition-last process, in which FePt film deposited at room temperature underwent lift-off and post-annealing processes, to avoid the exposure of FePt to Ar plasma. A patterned medium with 100-nm nano-columns showed an out-of-plane coercivity fivefold larger than its in-plane counterpart and a remanent magnetization comparable to saturation magnetization in the out-of-plane direction, indicating a high perpendicular anisotropy. These results demonstrate the high perpendicular anisotropy in FePt patterned media using a Cr-based compound seed layer for the first time and suggest that ultra-high-density magnetic recording media can be achieved using this optimized top-down approach

    The Association of AMPK with ULK1 Regulates Autophagy

    Get PDF
    Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex

    Taxpayer’s Perception to Tax Payment in Kind System in Support of SMEs’ Sustainability: Case of the South Korean Government’s Valuation of Unlisted Stocks

    No full text
    In Korea, unlisted stock shares are accepted as payment for inheritance tax. In the case of insufficient cash, a taxpayer can pay the government with listed or unlisted stocks (hereinafter referred to as “tax payment in kind”). The drawback of this tax payment system is that receiving tax paid with stocks is subject to the valuation of the government and selling the stocks to an open market requires another valuation. The results of these two valuations show considerable differences, and, therefore, the selling price in the open market is very low. This study analyzes how taxpayers recognize the differences in the valuation results of these unlisted stocks and how the differences affect the pricing for repurchasing the stocks from the open market. Results show that high valuation of unlisted stocks in tax payment in kind drives buyers to lower the purchasing price in the open market. This finding implies a problem in the government’s valuation method of unlisted stocks collected as tax

    Religious Diversity of Corporate Board and Firm Value: Evidence from South Korea

    No full text
    When the board provides quality monitoring and advising to corporate managers, firms can achieve their goal, and so firm value increases. Board diversity is one of the issues that can affect the board effectiveness through influencing the quality of monitoring and advising. Hence, many prior studies have analyzed the effect of board diversity in various dimensions such as gender, age, race, ethnicity, education background on firm value or performance. However, prior studies do not reach out to the religious diversity of the board. So, this study investigates the relationship between religious diversity of the board and firm value. Using unique data of religion of directors for companies listed in Korea from 2008 to 2011, this study provides the following empirical results. In general, a high level of religious diversity has a positive impact on the firm value. However, when the degree of religious diversity of the board exceeds a certain point, religious diversity shows a negative relationship with the firm value. In addition, if the religion of directors is concentrated in one religion (when the level of diversity is low), firm value is lower than other control firms. The empirical finding of this study shows that religious diversity of the board matters in a similar way of other dimension of the board diversity

    Extremely Low Frequency Magnetic Fields Induce Spermatogenic Germ Cell Apoptosis: Possible Mechanism

    No full text
    The energy generated by an extremely low frequency electromagnetic field (ELF-EMF) is too weak to directly induce genotoxicity. However, it is reported that an extremely low frequency magnetic field (ELF-MF) is related to DNA strand breakage and apoptosis. The testes that conduct spermatogenesis through a dynamic cellular process involving meiosis and mitosis seem vulnerable to external stress such as heat, MF exposure, and chemical or physical agents. Nevertheless the results regarding adverse effects of ELF-EMF on human or animal reproductive functions are inconclusive. According to the guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP; 2010) for limiting exposure to time-varying MF (1 Hz to 100 kHz), overall conclusion of epidemiologic studies has not consistently shown an association between human adverse reproductive outcomes and maternal or paternal exposure to low frequency fields. In animal studies there is no compelling evidence of causal relationship between prenatal development and ELF-MF exposure. However there is increasing evidence that EL-EMF exposure is involved with germ cell apoptosis in testes. Biophysical mechanism by which ELF-MF induces germ cell apoptosis has not been established. This review proposes the possible mechanism of germ cell apoptosis in testes induced by ELF-MF

    Extension of the DG Model to the Second-Order Quantum Correction for Analysis of the Single-Charge Effect in Sub-10-nm MOS Devices

    No full text
    We extended the density-gradient (DG) model to include a second-order quantum correction (SOQC) term. The DG model has been widely used as a device simulation model capable of simulating quantum effects in efficient way. However, when only the first order quantum correction term is considered in the DG model, it is difficult to accurately describe device characteristics such as carrier density or potential fluctuation in the narrow region due to discrete charges such as dopants and interface traps. Thus, we extended the DG model to the SOQC, implemented it as a three-dimensional (3D) simulator, and compared the simulation results for sub-10-nm devices, which have a single point charge, in the DG model and the 3D Schrödinger–Poisson (SP) solver. Through this, we identified that the DG extended to SOQC well reproduces the SP simulation results in terms of both capacitance–voltage (C–V) and local fluctuation in electron density
    corecore