676 research outputs found

    Comparisons of ELISA and Western blot assays for detection of autophagy flux

    Get PDF
    We analyzed autophagy/mitophagy flux in vitro (C2C12 myotubes) and in vivo (mouse skeletal muscle) following the treatments of autophagy inducers (starvation, rapamycin) and a mitophagy inducer (carbonyl cyanide m-chlorophenylhydrazone, CCCP) using two immunodetection methods, ELISA and Western blotting, and compared their working range, accuracy, and reliability. The ELISAs showed a broader working range than that of the LC3 Western blots (Table 1). Table 2 showed that data value distribution was tighter and the average standard error from the ELISA was much smaller than those of the Western blot, directly relating to the accuracy of the assay. Test-retest reliability analysis showed good reliability for three individual ELISAs (interclass correlation, ≥ 0.7), but poor reliability for three individual Western blots (interclass correlation, ≤ 0.4) (Table 3). Keywords: Autophagy, Mitophagy, ELISA, Western blot, Skeletal muscl

    Learning Transferable Adversarial Robust Representations via Multi-view Consistency

    Full text link
    Despite the success on few-shot learning problems, most meta-learned models only focus on achieving good performance on clean examples and thus easily break down when given adversarially perturbed samples. While some recent works have shown that a combination of adversarial learning and meta-learning could enhance the robustness of a meta-learner against adversarial attacks, they fail to achieve generalizable adversarial robustness to unseen domains and tasks, which is the ultimate goal of meta-learning. To address this challenge, we propose a novel meta-adversarial multi-view representation learning framework with dual encoders. Specifically, we introduce the discrepancy across the two differently augmented samples of the same data instance by first updating the encoder parameters with them and further imposing a novel label-free adversarial attack to maximize their discrepancy. Then, we maximize the consistency across the views to learn transferable robust representations across domains and tasks. Through experimental validation on multiple benchmarks, we demonstrate the effectiveness of our framework on few-shot learning tasks from unseen domains, achieving over 10\% robust accuracy improvements against previous adversarial meta-learning baselines.Comment: *Equal contribution (Author ordering determined by coin flip). NeurIPS SafetyML workshop 2022, Under revie

    Characterization of GDP-mannose Pyrophosphorylase from Escherichia Coli O157:H7 EDL933 and Its Broad Substrate Specificity

    Full text link
    GDP-mannose pyrophosphorylase gene (ManC) of Escherichia coli (E. coli) O157 was cloned and expressed as a highly soluble protein in E. coli BL21 (DE3). The enzyme was subsequently purified using hydrophobic and ion exchange chromatographies. ManC showed very broad substrate specificities for four nucleotides and various hexose-1-phosphates, yielding ADP-mannose, CDP-mannose, UDP-mannose, GDP-mannose, GDP-glucose and GDP-2-deoxy-glucose

    Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation

    Get PDF
    AbstractCapsicum annuum L. Bugang exhibits a hypersensitive response against Tobacco mosaic virus (TMV) P0 infection. The C. annuum UDP-glucosyltransferase 1 (CaUGT1) gene was upregulated during resistance response to TMV and by salicylic acid, ethephon, methyl viologen, and sodium nitroprusside treatment. When the gene was downregulated by virus-induced gene silencing, a delayed HR was observed. In addition, free and total SA concentrations in the CaUGT1-downregulated hot pepper were decreased by 52% and 48% compared to that of the control plants, respectively. This suggested that the CaUGT1 gene was involved in resistance response against TMV infection by controlling the accumulation of SA

    Optical biochemical sensor based on half-circled microdisk laser diode

    Get PDF
    In this study, a half-circled cavity based microdisk laser diode is proposed and demonstrated experimentally for an integrated photonic biochemical sensor. Conventional microdisk sensors have limitations in optical coupling and reproducibility. In order to overcome these drawbacks, we design a novel half-circled micro disk laser (HC-MDL) which is easy to manufacture and has optical output directionality. The Q-factor of the fabricated HC-MDL was measured as 7.72 × 106 using the self-heterodyne method and the side mode suppression ratio was measured as 23 dB. Moreover, gas sensing experiments were performed using the HC-MDL sensor. A wavelength shift response of 14.21 pm was obtained for 100 ppb dimethyl methylphosphonate (DMMP) gas and that of 14.70 pm was obtained for 1 ppm ethanol gas. These results indicate the possibility of highly sensitive gas detection at ppb levels using HC-MDL. This attractive feature of the HC-MDL sensor is believed to be very useful for a wide variety of optical biochemical sensor applications. © 2017 Optical Society of America.1

    One-pot Enzymatic Synthesis of Deoxy-thymidine-diphosphate (TDP)-2-deoxy-∝-d-glucose Using Phosphomannomutase

    Full text link
    Production of deoxy-thymidine-diphosphate (TDP)-sugars as substrates of glycosyltransferases, has been one of main hurdles for combinatorial antibiotic biosynthesis, which combines sugar moiety with aglycon of various antibiotics. Here, we report the one-pot enzymatic synthesis of TDP-2-deoxy-glucose employing high efficient TMP kinase (TMK; E.C. 2.7.2.12), acetate kinase (ACK; E.C. 2.7.1.21), and TDP-glucose synthase (TGS; E.C. 2.7.7.24) with phosphomannomutase (PMM; E.C. 5.4.2.8). In this study, replacing phosphoglucomutase (PGM; E.C. 5.4.2) by PMM from Escherichia coli gave four times higher specific activity on 2-deoxy-6-phosphate glucose, suggesting that the activity on 2-deoxy-glucose-6-phosphate was mainly affected by PMM activity, not PGM activity. Using an in vitro system starting from TMP and 2-deoxy-glucose-6-phosphate glucose, TDP-2-deoxy-glucose (63% yield) was successfully synthesized. Considering low productivity of NDP-sugars from cheap starting materials, this paper showed how production of NDP-sugars could be enhanced by controlling mutase activity
    corecore