40,455 research outputs found
Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100
The generation of a flat electron beam directly from a photoinjector is an
attractive alternative to the electron damping ring as envisioned for linear
colliders. It also has potential applications to light sources such as the
generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers.
In this Letter, we report on the experimental generation of a flat-beam with a
measured transverse emittance ratio of for a bunch charge of
nC; the smaller measured normalized root-mean-square emittance is
m and is limited by the resolution of our experimental setup.
The experimental data, obtained at the Fermilab/NICADD Photoinjector
Laboratory, are compared with numerical simulations and the expected scaling
laws.Comment: 5 pages, 3 figure
Non-specific cellular uptake of surface-functionalized quantum dots
We report a systematic empirical study of nanoparticle internalization into
cells via non-specific pathways. The nanoparticles were comprised of commercial
quantum dots (QDs) that were highly visible under a fluorescence confocal
microscope. Surface-modified QDs with basic biologically-significant moieties,
e.g. carboxyl, amino, streptavidin were used, in combination with the surface
derivatization with polyethylene glycol (PEG) in a range of immortalized cell
lines. Internalization rates were derived from image analysis and a detailed
discussion about the effect of nanoparticle size, charge and surface groups is
presented. We find that PEG-derivatization dramatically suppresses the
non-specific uptake while PEG-free carboxyl and amine functional groups promote
QD internalization. These uptake variations displayed a remarkable consistency
across different cell types. The reported results are important for experiments
concerned with cellular uptake of surface-functionalized nanomaterials, both
when non-specific internalization is undesirable and also when it is intended
for material to be internalized as efficiently as possible.
Published article at: http://iopscience.iop.org/0957-4484/21/28/285105/Comment: 14 pages 7 figure
A Study on the Sudden Death of Entanglement
The dynamics of entanglement and the phenomenon of entanglement sudden death
(ESD) \cite{yu} are discussed in bipartite systems, measured by Wootters
Concurrence. Our calculation shows that ESD appears whenever the system is open
or closed and is dependent on the initial condition. The relation of the
evolution of entanglement and energy transfer between the system and its
surroundings is also studied.Comment: Comments and criticism are welcome. Accepted by Phys. Lett.
Neutrino Oscillations and Lepton Flavor Mixing
In view of the recent announcement on non-zero neutrino mass from
Super-Kamiokande experiment, it would be very timely to investigate all the
possible scenarios on masses and mixings of light neutrinos. Recently suggested
mass matrix texture for the quark CKM mixing, which can be originated from the
family permutation symmetry and its suitable breakings, is assumed for the
neutrino mass matrix and determined by the four combinations of solar,
atmospheric and LSND neutrino data and cosmological hot dark matter bound as
input constraints. The charged-lepton mass matrix is assumed to be diagonal so
that the neutrino mixing matrix can be identified directly as the lepton flavor
mixing matrix and no CP invariance violation originates from the leptonic
sector. The results favor hierarchical patterns for the neutrino masses, which
follow from the case when either solar-atmospheric data or solar-HDM
constraints are used.Comment: Latex, 9 page
On Horizontal and Vertical Separation in Hierarchical Text Classification
Hierarchy is a common and effective way of organizing data and representing
their relationships at different levels of abstraction. However, hierarchical
data dependencies cause difficulties in the estimation of "separable" models
that can distinguish between the entities in the hierarchy. Extracting
separable models of hierarchical entities requires us to take their relative
position into account and to consider the different types of dependencies in
the hierarchy. In this paper, we present an investigation of the effect of
separability in text-based entity classification and argue that in hierarchical
classification, a separation property should be established between entities
not only in the same layer, but also in different layers. Our main findings are
the followings. First, we analyse the importance of separability on the data
representation in the task of classification and based on that, we introduce a
"Strong Separation Principle" for optimizing expected effectiveness of
classifiers decision based on separation property. Second, we present
Hierarchical Significant Words Language Models (HSWLM) which capture all, and
only, the essential features of hierarchical entities according to their
relative position in the hierarchy resulting in horizontally and vertically
separable models. Third, we validate our claims on real-world data and
demonstrate that how HSWLM improves the accuracy of classification and how it
provides transferable models over time. Although discussions in this paper
focus on the classification problem, the models are applicable to any
information access tasks on data that has, or can be mapped to, a hierarchical
structure.Comment: Full paper (10 pages) accepted for publication in proceedings of ACM
SIGIR International Conference on the Theory of Information Retrieval
(ICTIR'16
Exceptionally Slow Rise in Differential Reflectivity Spectra of Excitons in GaN: Effect of Excitation-induced Dephasing
Femtosecond pump-probe (PP) differential reflectivity spectroscopy (DRS) and
four-wave mixing (FWM) experiments were performed simultaneously to study the
initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats
between the A-B excitons were found \textit{only for positive time delay} in
both PP and FWM experiments. The rise time at negative time delay for the
differential reflection spectra was much slower than the FWM signal or PP
differential transmission spectroscopy (DTS) at the exciton resonance. A
numerical solution of a six band semiconductor Bloch equation model including
nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS
results from excitation induced dephasing (EID), that is, the strong density
dependence of the dephasing time which changes with the laser excitation
energy.Comment: 8 figure
Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with 1H-NMR based metabolic profiling
The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake
- âŠ