41 research outputs found

    Discovering Potential Correlations via Hypercontractivity

    Full text link
    Discovering a correlation from one variable to another variable is of fundamental scientific and practical interest. While existing correlation measures are suitable for discovering average correlation, they fail to discover hidden or potential correlations. To bridge this gap, (i) we postulate a set of natural axioms that we expect a measure of potential correlation to satisfy; (ii) we show that the rate of information bottleneck, i.e., the hypercontractivity coefficient, satisfies all the proposed axioms; (iii) we provide a novel estimator to estimate the hypercontractivity coefficient from samples; and (iv) we provide numerical experiments demonstrating that this proposed estimator discovers potential correlations among various indicators of WHO datasets, is robust in discovering gene interactions from gene expression time series data, and is statistically more powerful than the estimators for other correlation measures in binary hypothesis testing of canonical examples of potential correlations.Comment: 30 pages, 19 figures, accepted for publication in the 31st Conference on Neural Information Processing Systems (NIPS 2017

    Generative Pre-Training of Time-Series Data for Unsupervised Fault Detection in Semiconductor Manufacturing

    Full text link
    This paper introduces TRACE-GPT, which stands for Time-seRies Anomaly-detection with Convolutional Embedding and Generative Pre-trained Transformers. TRACE-GPT is designed to pre-train univariate time-series sensor data and detect faults on unlabeled datasets in semiconductor manufacturing. In semiconductor industry, classifying abnormal time-series sensor data from normal data is important because it is directly related to wafer defect. However, small, unlabeled, and even mixed training data without enough anomalies make classification tasks difficult. In this research, we capture features of time-series data with temporal convolutional embedding and Generative Pre-trained Transformer (GPT) to classify abnormal sequences from normal sequences using cross entropy loss. We prove that our model shows better performance than previous unsupervised models with both an open dataset, the University of California Riverside (UCR) time-series classification archive, and the process log of our Chemical Vapor Deposition (CVD) equipment. Our model has the highest F1 score at Equal Error Rate (EER) across all datasets and is only 0.026 below the supervised state-of-the-art baseline on the open dataset

    Domain Generalization Strategy to Train Classifiers Robust to Spatial-Temporal Shift

    Full text link
    Deep learning-based weather prediction models have advanced significantly in recent years. However, data-driven models based on deep learning are difficult to apply to real-world applications because they are vulnerable to spatial-temporal shifts. A weather prediction task is especially susceptible to spatial-temporal shifts when the model is overfitted to locality and seasonality. In this paper, we propose a training strategy to make the weather prediction model robust to spatial-temporal shifts. We first analyze the effect of hyperparameters and augmentations of the existing training strategy on the spatial-temporal shift robustness of the model. Next, we propose an optimal combination of hyperparameters and augmentation based on the analysis results and a test-time augmentation. We performed all experiments on the W4C22 Transfer dataset and achieved the 1st performance.Comment: Core Transfer Track 1st place solution in Weather4Cast competition at NeuIPS2

    Simple Baseline for Weather Forecasting Using Spatiotemporal Context Aggregation Network

    Full text link
    Traditional weather forecasting relies on domain expertise and computationally intensive numerical simulation systems. Recently, with the development of a data-driven approach, weather forecasting based on deep learning has been receiving attention. Deep learning-based weather forecasting has made stunning progress, from various backbone studies using CNN, RNN, and Transformer to training strategies using weather observations datasets with auxiliary inputs. All of this progress has contributed to the field of weather forecasting; however, many elements and complex structures of deep learning models prevent us from reaching physical interpretations. This paper proposes a SImple baseline with a spatiotemporal context Aggregation Network (SIANet) that achieved state-of-the-art in 4 parts of 5 benchmarks of W4C22. This simple but efficient structure uses only satellite images and CNNs in an end-to-end fashion without using a multi-model ensemble or fine-tuning. This simplicity of SIANet can be used as a solid baseline that can be easily applied in weather forecasting using deep learning.Comment: 1st place solution for stage1 and Core Transfer in the Weather4Cast competition on NeurIPS 2
    corecore