245 research outputs found

    Surgical correction of postpneumonectomy-like syndrome in a patient with a tuberculosis-destroyed lung

    Get PDF

    Universal Few-shot Learning of Dense Prediction Tasks with Visual Token Matching

    Full text link
    Dense prediction tasks are a fundamental class of problems in computer vision. As supervised methods suffer from high pixel-wise labeling cost, a few-shot learning solution that can learn any dense task from a few labeled images is desired. Yet, current few-shot learning methods target a restricted set of tasks such as semantic segmentation, presumably due to challenges in designing a general and unified model that is able to flexibly and efficiently adapt to arbitrary tasks of unseen semantics. We propose Visual Token Matching (VTM), a universal few-shot learner for arbitrary dense prediction tasks. It employs non-parametric matching on patch-level embedded tokens of images and labels that encapsulates all tasks. Also, VTM flexibly adapts to any task with a tiny amount of task-specific parameters that modulate the matching algorithm. We implement VTM as a powerful hierarchical encoder-decoder architecture involving ViT backbones where token matching is performed at multiple feature hierarchies. We experiment VTM on a challenging variant of Taskonomy dataset and observe that it robustly few-shot learns various unseen dense prediction tasks. Surprisingly, it is competitive with fully supervised baselines using only 10 labeled examples of novel tasks (0.004% of full supervision) and sometimes outperforms using 0.1% of full supervision. Codes are available at https://github.com/GitGyun/visual_token_matching

    Towards End-to-End Generative Modeling of Long Videos with Memory-Efficient Bidirectional Transformers

    Full text link
    Autoregressive transformers have shown remarkable success in video generation. However, the transformers are prohibited from directly learning the long-term dependency in videos due to the quadratic complexity of self-attention, and inherently suffering from slow inference time and error propagation due to the autoregressive process. In this paper, we propose Memory-efficient Bidirectional Transformer (MeBT) for end-to-end learning of long-term dependency in videos and fast inference. Based on recent advances in bidirectional transformers, our method learns to decode the entire spatio-temporal volume of a video in parallel from partially observed patches. The proposed transformer achieves a linear time complexity in both encoding and decoding, by projecting observable context tokens into a fixed number of latent tokens and conditioning them to decode the masked tokens through the cross-attention. Empowered by linear complexity and bidirectional modeling, our method demonstrates significant improvement over the autoregressive Transformers for generating moderately long videos in both quality and speed. Videos and code are available at https://sites.google.com/view/mebt-cvpr2023

    Dynamic human resource selection for business process exceptions

    Get PDF
    A key capability of today's organizations is to flexibly and effectively react to unexpected events. A critical case of an unexpected event is sudden unavailability of human resources, which was not properly addressed by existing resource allocation approaches. This paper proposes a systematic approach that analyzes event logs to select suitable substitutes if the initial human resources become unavailable. The approach uses process mining and social network analysis to derive a metric called degree of substitution, which measures how much the work experiences of the human resources overlap, from the two perspectives: task execution and transfer of work. Along with the metric, suitable substitutes are also identified. A simulation demonstrates that the approach identifies suitable substitutes more effectively and accurately than existing allocation methods such as role‐based allocation or random allocation. The proposed approach will increase the effectiveness of dynamic allocation of human resources, especially in an exceptional situation.11Yscopu

    Learning Symmetrization for Equivariance with Orbit Distance Minimization

    Full text link
    We present a general framework for symmetrizing an arbitrary neural-network architecture and making it equivariant with respect to a given group. We build upon the proposals of Kim et al. (2023); Kaba et al. (2023) for symmetrization, and improve them by replacing their conversion of neural features into group representations, with an optimization whose loss intuitively measures the distance between group orbits. This change makes our approach applicable to a broader range of matrix groups, such as the Lorentz group O(1, 3), than these two proposals. We experimentally show our method's competitiveness on the SO(2) image classification task, and also its increased generality on the task with O(1, 3). Our implementation will be made accessible at https://github.com/tiendatnguyen-vision/Orbit-symmetrize.Comment: 16 pages, 1 figur

    Transformers meet Stochastic Block Models: Attention with Data-Adaptive Sparsity and Cost

    Full text link
    To overcome the quadratic cost of self-attention, recent works have proposed various sparse attention modules, most of which fall under one of two groups: 1) sparse attention under a hand-crafted patterns and 2) full attention followed by a sparse variant of softmax such as α\alpha-entmax. Unfortunately, the first group lacks adaptability to data while the second still requires quadratic cost in training. In this work, we propose SBM-Transformer, a model that resolves both problems by endowing each attention head with a mixed-membership Stochastic Block Model (SBM). Then, each attention head data-adaptively samples a bipartite graph, the adjacency of which is used as an attention mask for each input. During backpropagation, a straight-through estimator is used to flow gradients beyond the discrete sampling step and adjust the probabilities of sampled edges based on the predictive loss. The forward and backward cost are thus linear to the number of edges, which each attention head can also choose flexibly based on the input. By assessing the distribution of graphs, we theoretically show that SBM-Transformer is a universal approximator for arbitrary sequence-to-sequence functions in expectation. Empirical evaluations under the LRA and GLUE benchmarks demonstrate that our model outperforms previous efficient variants as well as the original Transformer with full attention. Our implementation can be found in https://github.com/sc782/SBM-Transformer .Comment: 19 pages, 8 figure
    corecore