383 research outputs found

    An Autonomous Navigation System for Unmanned Underwater Vehicle

    Get PDF

    Ground-state structure of the hydrogen double vacancy on Pd(111)

    Full text link
    We determine the ground-state structure of a double vacancy in a hydrogen monolayer on the Pd(111) surface. We represent the double vacancy as a triple vacancy containing one additional hydrogen atom. The potential-energy surface for a hydrogen atom moving in the triple vacancy is obtained by density-functional theory, and the wave function of the fully quantum hydrogen atom is obtained by solving the Schr\"odinger equation. We find that an H atom in a divacancy defect experiences significant quantum effects, and that the ground-state wave function is centered at the hcp site rather than the fcc site normally occupied by H atoms on Pd(111). Our results agree well with scanning tunneling microscopy images.Comment: 5 pages, 3 figure

    Structure of AlSb(001) and GaSb(001) Surfaces Under Extreme Sb-rich Conditions

    Full text link
    We use density-functional theory to study the structure of AlSb(001) and GaSb(001) surfaces. Based on a variety of reconstruction models, we construct surface stability diagrams for AlSb and GaSb under different growth conditions. For AlSb(001), the predictions are in excellent agreement with experimentally observed reconstructions. For GaSb(001), we show that previously proposed model accounts for the experimentally observed reconstructions under Ga-rich growth conditions, but fails to explain the experimental observations under Sb-rich conditions. We propose a new model that has a substantially lower surface energy than all (nx5)-like reconstructions proposed previously and that, in addition, leads to a simulated STM image in better agreement with experiment than existing models. However, this new model has higher surface energy than some of (4x3)-like reconstructions, models with periodicity that has not been observed. Hence we conclude that the experimentally observed (1x5) and (2x5) structures on GaSb(001) are kinetically limited rather than at the ground state.Comment: 6 pages, 6 figure

    Gate modulation of the long-range magnetic order in a vanadium-doped WSe2 semiconductor

    Full text link
    We demonstrate the gate-tunability of the long-range magnetic order in a p-type V-doped WSe2 monolayer using ab initio calculations. We found that at a low V-doping concentration limit, the long-range ferromagnetic order is enhanced by increasing the hole density. In contrast, the short-range antiferromagnetic order is manifested at a high electron density by full compensation of the p-type V doping concentration. The hole-mediated long-range magnetic exchange is ~70 meV, thus strongly suggesting the ferromagnetism in V-doped WSe2 at room temperature. Our findings on strong coupling between charge and spin order in V-doped WSe2 provide plenty of room for multifunctional gate-tunable spintronics.Comment: 13 pages, 4 figures, 1 tabl

    The effect of Fe atoms on the adsorption of a W atom on W(100) surface

    Full text link
    We report a first-principles calculation that models the effect of iron (Fe) atoms on the adsorption of a tungsten (W) atom on W(100) surfaces. The adsorption of a W atom on a clean W(100) surface is compared with that of a W atom on a W(100) surface covered with a monolayer of Fe atoms. The total energy of the system is computed as the function of the height of the W adatom. Our result shows that the W atom first adsorbs on top of the Fe monolayer. Then the W atom can replace one of the Fe atoms through a path with a moderate energy barrier and reduce its energy further. This intermediate site makes the adsorption (and desorption) of W atoms a two-step process in the presence of Fe atoms and lowers the overall adsorption energy by nearly 2.4 eV. The Fe atoms also provide a surface for W atoms to adsorb facilitating the diffusion of W atoms. The combination of these two effects result in a much more efficient desorption and diffusion of W atoms in the presence of Fe atoms. Our result provides a fundamental mechanism that can explain the activated sintering of tungsten by Fe atoms.Comment: 9 pages, 2 figure
    corecore