2,778 research outputs found
Dilatonic wormholes: construction, operation, maintenance and collapse to black holes
The CGHS two-dimensional dilaton gravity model is generalized to include a
ghost Klein-Gordon field, i.e. with negative gravitational coupling. This
exotic radiation supports the existence of static traversible wormhole
solutions, analogous to Morris-Thorne wormholes. Since the field equations are
explicitly integrable, concrete examples can be given of various dynamic
wormhole processes, as follows. (i) Static wormholes are constructed by
irradiating an initially static black hole with the ghost field. (ii) The
operation of a wormhole to transport matter or radiation between the two
universes is described, including the back-reaction on the wormhole, which is
found to exhibit a type of neutral stability. (iii) It is shown how to maintain
an operating wormhole in a static state, or return it to its original state, by
turning up the ghost field. (iv) If the ghost field is turned off, either
instantaneously or gradually, the wormhole collapses into a black hole.Comment: 9 pages, 7 figure
Mechanisms of Groucho-mediated repression revealed by genome-wide analysis of Groucho binding and activity
Antibody validation (A) Chromatin isolated and sheared exactly as for the ChIP-seq analysis was subjected to immunoprecipitation with the indicated amounts (in μl) of affinity purified antibody against the Gro GP domain used for the ChIP-seq analysis, and then probed in a western blot with both an anti-Gro monoclonal antibody (mAb) or the anti-GP antibody. The band indicated by the asterisk is a cross-reacting protein that is recognized in the western blot but that is not efficiently immunoprecipitated by the anti-GP antibody. Ab HC – antibody heavy chain. (B) Heat map showing overlap (Jacard similarity coefficient [96]) between the peaks called in the duplicate ChIP-seq experiments at each time point. (C) Representative genome browser tracts comparing duplicate ChIP-seq experiments. (D and E) Comparison of Gro binding patterns obtained by ChIP-seq using our anti-GP antibody with that obtained by ChIP-chip (0–12 hr embryos; modENCODE #597) and ChIP-seq (white pre-pupae; modENCODE #4981) using independently derived antibodies [40]. (PDF 588 kb
Structural and Antiferromagnetic Properties of Ba(Fe1−x−yCoxRhy)2As2 compounds
We present a systematic investigation of the electrical, structural, and antiferromagnetic properties for the series of Ba(Fe1 −x−yCoxRhy)2As2 compounds with fixed x ≈ 0.027 and 0 ≤ y ≤ 0.035. We compare our results for the Co-Rh doped Ba(Fe1−x−yCoxRhy)2As2 compounds with the Co doped Ba(Fe1−xCox)2As2 compounds. We demonstrate that the electrical, structural, antiferromagnetic, and superconducting properties of the Co-Rh doped compounds are similar to the properties of the Co doped compounds. We find that the overall behaviors of Ba(Fe1−x−yCoxRhy)2As2 and Ba(Fe1−xCox)2As2 compounds are very similar when the total number of extra electrons per Fe/TM (TM=transition metal) site is considered, which is consistent with the rigid band model. Despite the similarity, we find that the details of the transitions, for example, the temperature difference between the structural and antiferromagnetic transition temperatures and the incommensurability of the antiferromangetic peaks, are different between Ba(Fe1−x−yCoxRhy)2As2 and Ba(Fe1−xCox)2As2 compounds
Actin cap associated focal adhesions and their distinct role in cellular mechanosensing
The ability for cells to sense and adapt to different physical microenvironments plays a critical role in development, immune responses, and cancer metastasis. Here we identify a small subset of focal adhesions that terminate fibers in the actin cap, a highly ordered filamentous actin structure that is anchored to the top of the nucleus by the LINC complexes; these differ from conventional focal adhesions in morphology, subcellular organization, movements, turnover dynamics, and response to biochemical stimuli. Actin cap associated focal adhesions (ACAFAs) dominate cell mechanosensing over a wide range of matrix stiffness, an ACAFA-specific function regulated by actomyosin contractility in the actin cap, while conventional focal adhesions are restrictively involved in mechanosensing for extremely soft substrates. These results establish the perinuclear actin cap and associated ACAFAs as major mediators of cellular mechanosensing and a critical element of the physical pathway that transduce mechanical cues all the way to the nucleus
The oncogenic transcription factor ERG represses the transcription of the tumour suppressor gene PTEN in prostate cancer cells
© 2017, Spandidos Publications. All rights reserved. The oncogene ETS-related gene (ERG) encodes a transcription factor with roles in the regulation of haematopoiesis, angiogenesis, vasculogenesis, inflammation, migration and invasion. The ERG oncogene is activated in >50% of prostate cancer cases, generally through a gene fusion with the androgen-responsive promoter of transmembrane protease serine 2. Phosphatase and tensin homologue (PTEN) is an important tumour suppressor gene that is often inactivated in cancer. ERG overexpression combined with PTEN inactivation or loss is often associated with aggressive prostate cancer. The present study aimed to determine whether or not ERG regulates PTEN transcription directly. ERG was demonstrated to bind to the PTEN promoter and repress its transcription. ERG overexpression reduced endogenous PTEN expression, whereas ERG knockdown increased PTEN expression. The ability of ERG to repress PTEN may contribute to a more cancer-permissive environment
Efficacy of an inactivated whole-cell injection vaccine for nile tilapia, Oreochromis niloticus (L), against multiple isolates of Francisella noatunensis subsp. orientalis from diverse geographical regions
Francisellosis, induced by Francisella noatunensis subsp. orientalis (Fno), is an emerging bacterial disease representing a major threat to the global tilapia industry. There are no commercialised vaccines presently available against francisellosis for use in farmed tilapia, and the only available therapeutic practices used in the field are either the prolonged use of antibiotics or increasing water temperature. Recently, an autogenous whole cell-adjuvanted injectable vaccine was developed that gave 100% relative percent survival (RPS) in tilapia challenged with a homologous isolate of Fno. In this study, we evaluated the efficacy of this vaccine against challenge with heterologous Fno isolates. Healthy Nile tilapia, Oreochromis niloticus (∼15 g) were injected intraperitoneally (i.p.) with the vaccine, adjuvant-alone or phosphate buffer saline (PBS) followed by an i.p. challenge with three Fno isolates from geographically distinct locations. The vaccine provided significant protection in all groups of vaccinated tilapia, with a significantly higher RPS of 82.3% obtained against homologous challenge, compared to 69.8% and 65.9% with the heterologous challenges. Protection correlated with significantly higher specific antibody responses, and western blot analysis demonstrated cross-isolate antigenicity with fish sera post-vaccination and post-challenge. Moreover, a significantly lower bacterial burden was detected by qPCR in conjunction with significantly greater expression of IgM, IL-1 β, TNF-α and MHCII, 72 h post-vaccination (hpv) in spleen samples from vaccinated tilapia compared to fish injected with adjuvant-alone and PBS. The Fno vaccine described in this study may provide a starting point for development a broad-spectrum highly protective vaccine against francisellosis in tilapia
Enhanced Cerebroprotection of Xenon-Loaded Liposomes in Combination with rtPA Thrombolysis for Embolic Ischemic Stroke
Xenon (Xe) has shown great potential as a stroke treatment due to its exceptional ability to protect brain tissue without inducing side effects. We have previously developed Xe-loaded liposomes for the ultrasound-activated delivery of Xe into the cerebral region and demonstrated their therapeutic efficacy. At present, the sole FDA-approved thrombolytic agent for stroke treatment is recombinant tissue plasminogen activator (rtPA). In this study, we aimed to investigate the potential of combining Xe-liposomes with an intravenous rtPA treatment in a clinically relevant embolic rat stroke model. We evaluated the combinational effect using an in vitro clot lysis model and an in vivo embolic middle cerebral artery occlusion (eMCAO) rat model. The treatment groups received intravenous administration of Xe-liposomes (20 mg/kg) at 2 h post-stroke onset, followed by the administration of rtPA (10 mg/kg) at either 2 or 4 h after the onset. Three days after the stroke, behavioral tests were conducted, and brain sections were collected for triphenyltetrazolium chloride (TTC) and TUNEL staining. Infarct size was determined as normalized infarct volume (%). Both in vitro and in vivo clot lysis experiments demonstrated that Xe-liposomes in combination with rtPA resulted in effective clot lysis comparable to the treatment with free rtPA alone. Animals treated with Xe-liposomes in combination with rtPA showed reduced TUNEL-positive cells and demonstrated improved neurological recovery. Importantly, Xe-liposomes in combination with late rtPA treatment reduced rtPA-induced hemorrhage, attributing to the reduction of MMP9 immunoreactivity. This study demonstrates that the combined therapy of Xe-liposomes and rtPA provides enhanced therapeutic efficacy, leading to decreased neuronal cell death and a potential to mitigate hemorrhagic side effects associated with late rtPA treatment
- …