21 research outputs found

    OCT for non-destructive examination of the internal biological structures of mosquito specimen

    Get PDF
    The Study of mosquitoes and their behavioral analysis are of crucial importance to control the alarmingly increasing mosquito-borne diseases. Conventional imaging techniques use either dissection, exogenous contrast agents. Non-destructive imaging techniques, like x-ray and microcomputed tomography uses ionizing radiations. Hence, a non-destructive and real-time imaging technique which can obtain high resolution images to study the anatomical features of mosquito specimen can greatly aid researchers for mosquito studies. In this study, the three-dimensional imaging capabilities of optical coherence tomography (OCT) for structural analysis of Anopheles sinensis mosquitoes has been demonstrated. The anatomical features of An. sinensis head, thorax, and abdomen regions along with internal morphological structures like foregut, midgut, and hindgut were studied using OCT imaging. Two-dimensional (2D) and three-dimensional (3D) OCT images along with histology images were helpful for the anatomical analysis of the mosquito specimens. From the concurred results and by exhibiting this as an initial study, the applicability of OCT in future entomological researches related to mosquitoes and changes in its anatomical structure is demonstrated

    Full-Field Optical Coherence Tomography Using Galvo Filter-Based Wavelength Swept Laser

    No full text
    We report a wavelength swept laser-based full-field optical coherence tomography for measuring the surfaces and thicknesses of refractive and reflective samples. The system consists of a galvo filter–based wavelength swept laser and a simple Michelson interferometer. Combinations of the reflective and refractive samples are used to demonstrate the performance of the system. By synchronizing the camera with the source, the cross-sectional information of the samples can be seen after each sweep of the swept source. This system can be effective for the thickness measurement of optical thin films as well as for the depth investigation of samples in industrial applications. A resolution target with a glass cover slip and a step height standard target are imaged, showing the cross-sectional and topographical information of the samples

    High-resolution optical scanner for 3D bio-printing

    No full text

    Optical Inspection and Morphological Analysis of Diospyros kaki Plant Leaves for the Detection of Circular Leaf Spot Disease

    No full text
    The feasibility of using the bio-photonic imaging technique to assess symptoms of circular leaf spot (CLS) disease in Diospyros kaki (persimmon) leaf samples was investigated. Leaf samples were selected from persimmon plantations and were categorized into three groups: healthy leaf samples, infected leaf samples, and healthy-looking leaf samples from infected trees. Visually non-identifiable reduction of the palisade parenchyma cell layer thickness is the main initial symptom, which occurs at the initial stage of the disease. Therefore, we established a non-destructive bio-photonic inspection method using a 1310 nm swept source optical coherence tomography (SS-OCT) system. These results confirm that this method is able to identify morphological differences between healthy leaves from infected trees and leaves from healthy and infected trees. In addition, this method has the potential to generate significant cost savings and good control of CLS disease in persimmon fields

    Multiple Wavelength Optical Coherence Tomography Assessments for Enhanced Ex Vivo Intra-Cochlear Microstructural Visualization

    No full text
    The precise identification of intra-cochlear microstructures is an essential otorhinolaryngological requirement to diagnose the progression of cochlea related diseases. Thus, we demonstrated an experimental procedure to investigate the most optimal wavelength range, which can enhance the visualization of ex vivo intra-cochlear microstructures using multiple wavelengths (i.e., 860 nm, 1060 nm, and 1300 nm) based optical coherence tomography (OCT) systems. The high-resolution tomograms, volumetric, and quantitative evaluations obtained from Basilar membrane, organ of Corti, and scala vestibule regions revealed complementary comparisons between the aforementioned three distinct wavelengths based OCT systems. Compared to 860 nm and 1300 nm wavelengths, 1060 nm wavelength OCT was discovered to be an appropriate wavelength range verifying the simultaneously obtainable high-resolution and reasonable depth range visualization of intra-cochlear microstructures. Therefore, the implementation of 1060 nm OCT can minimize the necessity of two distinct OCT systems. Moreover, the results suggest that the performed qualitative and quantitative analysis procedure can be used as a powerful tool to explore further anatomical structures of the cochlea for future studies in otorhinolaryngology

    Non-Invasive Morphological Characterization of Rice Leaf Bulliform and Aerenchyma Cellular Regions Using Low Coherence Interferometry

    No full text
    Non-invasive investigation of rice leaf specimens to characterize the morphological formation and particular structural information that is beneficial for agricultural perspective was demonstrated using a low coherence interferometric method called swept source optical coherence tomography (SS-OCT). The acquired results non-invasively revealed morphological properties of rice leaf, such as bulliform cells; aerenchyma, parenchyma, and collenchyma layer; and vascular bundle. Beside aforementioned morphologic characteristics, several leaf characteristics associated with cytological mechanisms of leaf rolling (leaf inclination) were examined for the pre-identification of inevitable necrosis and atrophy of leaf tissues by evaluating acute angle information, such as angular characteristics of the external bi-directional angles between the lower epidermis layer and lower mid-vein, and internal angle of lower mid-vein. To further assist the pre-identification, acquired cross-sections were employed to enumerate the small veins of each leaf specimen. Since mutants enlarge leaf angles due to increased cell division in the adaxial epidermis, healthy and abnormal leaf specimens were morphologically and quantitatively compared. Therefore, the results of the method can be used in agriculture, and SS-OCT shows potential as a rigorous investigation method for selecting mutant infected rice leaf specimens rapidly and non-destructively compared to destructive and time consuming gold-standard methods with a lack of precision

    Numerical-Sampling-Functionalized Real-Time Index Regulation for Direct k-Domain Calibration in Spectral Domain Optical Coherence Tomography

    No full text
    An index-regulation technique functionalized by numerical sampling for direct calibration of the non-linear wavenumber (k)-domain to a linear domain in spectral domain optical coherence tomography (SD-OCT) is proposed. The objective of the developed method is to facilitate high-resolution identification of microstructures in biomedical imaging. Subjective optical alignments caused by nonlinear sampling of interferograms in the k-domain tend to hinder depth-dependent signal-to-noise ratios (SNR) and axial resolution in SD-OCT. Moreover, the optical-laser-dependent k-domain requires constant recalibrated in accordance with each laser transition, thereby necessitating either hardware or heavy software compensations. As the key feature of the proposed method, a relatively simple software-based k-domain mask calibration technique was developed to enable real-time linear sampling of k-domain interpolations whilst facilitating image observation through use of an index-regulation technique. Moreover, it has been confirmed that dispersion can be simultaneously compensated with noise residuals generated using the proposed technique, and that use of complex numerical or hardware techniques are no longer required. Observed results, such as fall-off, SNR, and axial resolution clearly exhibit the direct impact of the proposed technique, which could help investigators rapidly achieve optical-laser-independent high-quality SD-OCT images
    corecore