2,164 research outputs found

    Autoimmune hemolytic anemia predominantly associated with IgA anti-E and anti-c.

    Get PDF
    A patient with warm autoimmune hemolytic anemia (AIHA) due to predominance of immunoglobulin A (IgA) with an Rh specificity, considered to be the first case in Korea, is described. A 13-year-old male patient with severe hemolytic anemia showed a weak reactivity (1+) in the direct antiglobulin test (DAT) by using anti-IgG antiglobulin reagent. This finding, however, could not fully explain the patient's severe AIHA. When anti-IgA reagent was used for the DAT, strong reactivity (4+) was observed and free anti-E and anti-c autoantibodies were also detected by anti-IgA and anti-IgG reagents. The patient's hemoglobin began to rise with the administration of steroids. Because RBCs coated with multiple types of immunoglobulins are associated with more severe hemolysis than those only with IgG, the DATs using anti-IgA and other reagents are needed for the correct diagnosis when the result of DAT is not compatible with patient's clinical manifestations

    Vitamin D deficiency in infants aged 1 to 6 months

    Get PDF

    Soil-Pile Interaction Analysis using FE-BE Coupling in Frequency Domain

    Get PDF
    In this study, a numerical method for soil-pile interaction problems in multi-layered half-plane is developed in frequency domain using FE-BE coupling technique. The soil-pile interaction system is divided into two parts, so-called near field and far field. In the near field, beam elements are used for modeling pile and plane-strain finite elements for surrounding soil media. Also, a superstructure is considered as a lumped mass on a pile. In the far field, layered soil media is modeled by boundary element formulation using the dynamic fundamental solution. Then, these two fields are assembled using FE-BE coupling technique. This coupled numerical method automatically satisfies the radiation conditions because the far field boundary element formulation can handle the radiation conditions in a half plane. Additionally, the difference of relative displacement at the interface between soil and pile is considered by applying interface spring elements. In order to verify the proposed method for soil-pile interaction system, the dynamic responses of a pile in a multi-layered half-plane are performed and the numerical results are compared with the measured values from experiments. It is shown that the developed method can be an efficient numerical tool to solve the dynamic response of a pile buried in a multi-layered half plane

    Jamming transition in a highly dense granular system under vertical vibration

    Full text link
    The dynamics of the jamming transition in a three-dimensional granular system under vertical vibration is studied using diffusing-wave spectroscopy. When the maximum acceleration of the external vibration is large, the granular system behaves like a fluid, with the dynamic correlation function G(t) relaxing rapidly. As the acceleration of vibration approaches the gravitational acceleration g, the relaxation of G(t) slows down dramatically, and eventually stops. Thus the system undergoes a phase transition and behaves like a solid. Near the transition point, we find that the structural relaxation shows a stretched exponential behavior. This behavior is analogous to the behavior of supercooled liquids close to the glass transition.Comment: 5 pages, 5 figures, accepted by Phys. Rev.

    Two novel mutations of Wiskott–Aldrich syndrome: the molecular prediction of interaction between the mutated WASP L101P with WASP-interacting protein by molecular modeling

    Get PDF
    AbstractWiskott–Aldrich syndrome (WAS) is an X-linked disorder characterized by eczema, thrombocytopenia and increased susceptibility of infections, with mutations of the WAS gene being responsible for WAS and X-linked thrombocytopenia. Herein, two novel mutations of WAS at T336C on exon 3, and at 1326–1329, a G deletion on exon 10, resulting in L101P missense mutation and frameshift mutation 444 stop, respectively, are reported. The affected patients with either mutation showed severe suppression of WAS protein (WASP) levels, T cell proliferation, and CFSE-labeled T cells division. Because WASP L101 have not shown direct nuclear Overhauser effect (NOE) contact with the WASP-interacting protein (WIP) in NMR spectroscopy, molecular modeling was performed to evaluate the molecular effect of WASP P101 to WIP peptide. It is presumed that P101 induced a conformational change in the Q99 residue of WASP and made the side chain of Q99 move away from the WIP peptide, resulting in disruption of the hydrogen bond between Q99 WASP and Y475 WIP. A possible model for the molecular pathogenesis of WAS has been proposed by analyzing the interactions of WASP and WIP using a molecular modeling study
    • …
    corecore