12,741 research outputs found

    Effects of the Spin-Orbit Coupling and the Superconductivity in simple-cubic alpha-Polonium

    Full text link
    We have investigated the mechanism of stabilizing the simple-cubic (SC) structure in polonium (alpha- Po), based on the phonon dispersion calculations using the first-principles all-electron band method. We have demonstrated that the stable SC structure results from the suppression of the Peierls instability due to the strong spin-orbit coupling (SOC) in alpha-Po. Further, we have explored the possible superconductivity in alpha-Po, and predicted that it becomes a superconductor with Tc ~ 4 K. The transverse soft phonon mode at q ~ 2/3 R, which is greatly influenced by the SOC, plays an important role both in the structural stability and the superconductivity in alpha-Po. We have discussed effects of the SOC and the volume variation on the phonon dispersions and superconducting properties of alpha-Po.Comment: 5pages, 5figure

    Pressure-induced Phonon Softenings and the Structural and Magnetic Transitions in CrO2_{2}

    Full text link
    To investigate the pressure-induced structural transitions of chromium dioxide (CrO2_{2}), phonon dispersions and total energy band structures are calculated as a function of pressure. The first structural transition has been confirmed at Pβ‰ˆ\approx 10 GPa from the ground state tetragonal CrO2_{2} (t-CrO2_{2}) of rutile type to orthorhombic CrO2_{2} (o-CrO2_{2}) of CaCl2_{2} type. The half-metallic property is found to be preserved in o-CrO2_{2}. The softening of Raman-active B1g_{1g} phonon mode, which is responsible for this structural transition, is demonstrated. The second structural transition is found to occur for Pβ‰₯\geq 61.1 GPa from ferromagnetic (FM) o-CrO2_{2} to nonmagnetic (NM) monoclinic CrO2_{2} (m-CrO2_{2}) of MoO2_{2} type, which is related to the softening mode at {\bf q} = R(1/2,0,1/2). The third structural transition has been newly identified at P= 88.8 GPa from m-CrO2_{2} to cubic CrO2_{2} of CaF2_{2} type that is a FM insulator

    A study on the turbulent transport of an advective nature in the fluid plasma

    Full text link
    Advective nature of the electrostatic turbulent flux of plasma energy is studied numerically in a nearly adiabatic state. Such a state is represented by the Hasegawa-Mima equation that is driven by a noise that may model the destabilization due to the phase mismatch of the plasma density and the electric potential. The noise is assumed to be Gaussian and not to be invariant under reflection along a direction s^\hat s. It is found that the flux density induced by such noise is anisotropic: While it is random along s^\hat s, it is not along the perpendicular direction s^βŠ₯{\hat s}_\perp and the flux is not diffusive. The renormalized response may be approximated as advective with the velocity being proportional to (kρs)2(k\rho_s)^2 in the Fourier space kβƒ—\vec k

    Correlation Assisted Phonon Softenings and the Mott-Peierls Transition in VO2_{2}

    Full text link
    To explore the driving mechanisms of the metal-insulator transition (MIT) and the structural transition in VO2, we have investigated phonon dispersions of rutile VO2 (R-VO2) in the DFT and the DFT+U (U : Coulomb correlation) band calculations. We have found that the phonon softening instabilities occur in both cases, but the softened phonon mode only in the DFT+U describes properly both the MIT and the structural transition from R-VO2 to monoclinic VO2 (M1-VO2). This feature demonstrates that the Coulomb correlation effect plays an essential role of assisting the Peierls transition in R-VO2. We have also found from the phonon dispersion of M1-VO2 that M1 structure becomes unstable under high pressure. We have predicted a new phase of VO2 at high pressure that has a monoclinic CaCl2-type structure with metallic nature
    • …
    corecore