277 research outputs found
MPPI-IPDDP: Hybrid Method of Collision-Free Smooth Trajectory Generation for Autonomous Robots
This study presents a hybrid trajectory optimization method that generates a
collision-free smooth trajectory for autonomous mobile robots. The hybrid
method combines sampling-based model predictive path integral (MPPI) control
and gradient-based interior-point differential dynamic programming (IPDDP)
exploiting their advantages of exploration and smoothing. The proposed method,
called MPPI-IPDDP, consists of three steps. The first step generates a coarse
trajectory by MPPI control, the second step constructs a collision-free convex
corridor, and the third step smooths the coarse trajectory by IPDDP using the
collision-free convex corridor computed in the second step. For demonstration,
the proposed algorithm was applied to trajectory optimization for
differential-driving wheeled mobile robots and point-mass quadrotors. A
supplementary video of the simulations can be found at
https://youtu.be/-oUAt5sd9Bk
Recent Advances in Path Integral Control for Trajectory Optimization: An Overview in Theoretical and Algorithmic Perspectives
This paper presents a tutorial overview of path integral (PI) control
approaches for stochastic optimal control and trajectory optimization. We
concisely summarize the theoretical development of path integral control to
compute a solution for stochastic optimal control and provide algorithmic
descriptions of the cross-entropy (CE) method, an open-loop controller using
the receding horizon scheme known as the model predictive path integral (MPPI),
and a parameterized state feedback controller based on the path integral
control theory. We discuss policy search methods based on path integral
control, efficient and stable sampling strategies, extensions to multi-agent
decision-making, and MPPI for the trajectory optimization on manifolds. For
tutorial demonstrations, some PI-based controllers are implemented in MATLAB
and ROS2/Gazebo simulations for trajectory optimization. The simulation
frameworks and source codes are publicly available at
https://github.com/INHA-Autonomous-Systems-Laboratory-ASL/An-Overview-on-Recent-Advances-in-Path-Integral-Control.Comment: 16 pages, 9 figure
Multi-Robot Relative Pose Estimation in SE(2) with Observability Analysis: A Comparison of Extended Kalman Filtering and Robust Pose Graph Optimization
In this study, we address multi-robot localization issues, with a specific
focus on cooperative localization and observability analysis of relative pose
estimation. Cooperative localization involves enhancing each robot's
information through a communication network and message passing. If odometry
data from a target robot can be transmitted to the ego robot, observability of
their relative pose estimation can be achieved through range-only or
bearing-only measurements, provided both robots have non-zero linear
velocities. In cases where odometry data from a target robot are not directly
transmitted but estimated by the ego robot, both range and bearing measurements
are necessary to ensure observability of relative pose estimation. For
ROS/Gazebo simulations, we explore four sensing and communication structures.
We compare extended Kalman filtering (EKF) and pose graph optimization (PGO)
estimation using different robust loss functions (filtering and smoothing with
varying batch sizes of sliding windows) in terms of estimation accuracy. In
hardware experiments, two Turtlebot3 equipped with UWB modules are used for
real-world inter-robot relative pose estimation, applying both EKF and PGO and
comparing their performance.Comment: 20 pages, 21 figure
Photonic Hydrogel Sensors
Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display. This Review explains the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview of qualitative and quantitative readout technologies. Applications in clinical samples are discussed, and potential future directions are identified
- …