4,014 research outputs found

    Non-stationarity of isomorphism between AF algebras defined by stationary Bratteli diagrams

    Full text link
    We first study situations where the stable AF-algebras defined by two square primitive nonsingular incidence matrices with nonnegative integer matrix elements are isomorphic even though no powers of the associated automorphisms of the corresponding dimension groups are isomorphic. More generally we consider neccessary and sufficient conditions for two such matrices to determine isomorphic dimension groups. We give several examples.Comment: 16 page

    A criterion for the nature of the superconducting transition in strongly interacting field theories : Holographic approach

    Full text link
    It is beyond the present techniques based on perturbation theory to reveal the nature of phase transitions in strongly interacting field theories. Recently, the holographic approach has provided us with an effective dual description, mapping strongly coupled conformal field theories to classical gravity theories. Resorting to the holographic superconductor model, we propose a general criterion for the nature of the superconducting phase transition based on effective interactions between vortices. We find "tricritical" points in terms of the chemical potential for U(1) charges and an effective Ginzburg-Landau parameter, where vortices do not interact to separate the second order (repulsive) from the first order (attractive) transitions. We interpret the first order transition as the Coleman-Weinberg mechanism, arguing that it is relevant to superconducting instabilities around quantum criticality.Comment: 7 pages, 7 figure

    Unexpected Structures for Intercalation of Sodium in Epitaxial Graphene-SiC Interfaces

    Get PDF
    We show using scanning tunneling microscopy, spectroscopy, and ab initio calculations that several intercalation structures exist for Na in epitaxial graphene on SiC(0001). Intercalation takes place at room temperature and Na electron-dopes the graphene. It intercalates in-between single-layer graphene and the carbon-rich interfacial layer. It also penetrates beneath the interfacial layer and decouples it to form a second graphene layer. This decoupling is accelerated by annealing and is verified by direct Na deposition onto the interface layer. Our observations show that intercalation in graphene is fundamentally different than in graphite and is a versatile means of electronic control.Comment: 10 pages text, 2 pages, references, and 4 figure page

    Perspective on completing natural inflation

    Get PDF
    We present a perspective on the inflation paths in 2-, 3-,,, N-flation models based on the ultraviolet completion in heterotic string theory, where a number of grand unification scale axions are used. The number of non-Abelian gauge groups for a natural inflation is restricted in string compactification, and we argue that the most plausible completion of natural inflation from a theory perspective is the 2-flation.Comment: 5 pages, 1 eps figur

    Sequences of acetyl CoA carboxylase promoter for tumour necrosis factor action

    Get PDF
    Tumour necrosis factor (TNF) inhibits the accumulation of acetyl CoA carboxylase (ACC) mRNA by decreasing the rate of ACC gene transcription. The ACC mRNA species found in 30A5 cells are generated from promoter II and TNF inhibits the accumulation of class 2 type mRNAs. By using 5' deletion mutants of promoter II fused to the bacterial chloramphenicol acetyltransferase (CAT) gene, the DNA mobility shift assay and the DNase I footprinting assay, the authors have identified the 30 bp from āˆ’389 to āˆ’359 as the TNF responsive element in promoter II. TNF treatment causes a decrease in the binding activity of nuclear protein(s) specific to the TNF responsive element. When the fragment containing the TNF responsive element was incorporated into the thymidine kinase promoter, the chimeric gene exhibited TNF induced inhibition of expression

    511 keV Ī³\gamma-ray emission from the galactic bulge by MeV millicharged dark matter

    Full text link
    We propose a possible explanation for the recently observed anomalous 511 keV line with a new "millicharged" fermion. This new fermion is light [O(MeV){\cal O}({\rm MeV})]. Nevertheless, it has never been observed by any collider experiments by virtue of its tiny electromagnetic charge Ļµe\epsilon e. In particular, we constrain parameters of this millicharged particle if the 511 keV cosmic Ī³\gamma-ray emission from the galactic bulge is due to positron production from this new particle.Comment: 3 pages, 1 figure, A talk given by J.C.Park at the 16th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY08), Seoul, Korea, June 16-21, 200

    Antiferromagnetic metal to heavy-fermion metal quantum phase transition in the Kondo lattice model: A strong coupling approach

    Full text link
    We study the quantum phase transition from an antiferromagnetic metal to a heavy fermion metal in the Kondo lattice model. Based on the strong coupling approach we {\it first} diagonalize the Kondo coupling term. Since this strong coupling approach makes the resulting Kondo term {\it relevant}, the Kondo hybridization persists even in the antiferromagnetic metal, indicating that fluctuations of Kondo singlets are not critical in the phase transition. We find that the quantum transition in our strong coupling approach results from {\it softening of antiferromagnetic spin fluctuations of localized spins}, driven by the Kondo interaction. Thus, the volume change of Fermi surface becomes continuous across the transition. .....

    Site-directed gene mutation at mixed sequence targets by psoralen-conjugated pseudo-complementary peptide nucleic acids

    Get PDF
    Sequence-specific DNA-binding molecules such as triple helix-forming oligonucleotides (TFOs) provide a means for inducing site-specific mutagenesis and recombination at chromosomal sites in mammalian cells. However, the utility of TFOs is limited by the requirement for homopurine stretches in the target duplex DNA. Here, we report the use of pseudo-complementary peptide nucleic acids (pcPNAs) for intracellular gene targeting at mixed sequence sites. Due to steric hindrance, pcPNAs are unable to form pcPNAā€“pcPNA duplexes but can bind to complementary DNA sequences by Watsonā€“Crick pairing via double duplex-invasion complex formation. We show that psoralen-conjugated pcPNAs can deliver site-specific photoadducts and mediate targeted gene modification within both episomal and chromosomal DNA in mammalian cells without detectable off-target effects. Most of the induced psoralen-pcPNA mutations were single-base substitutions and deletions at the predicted pcPNA-binding sites. The pcPNA-directed mutagenesis was found to be dependent on PNA concentration and UVA dose and required matched pairs of pcPNAs. Neither of the individual pcPNAs alone had any effect nor did complementary PNA pairs of the same sequence. These results identify pcPNAs as new tools for site-specific gene modification in mammalian cells without purine sequence restriction, thereby providing a general strategy for designing gene targeting molecules
    • ā€¦
    corecore