1,359 research outputs found

    SRZoo: An integrated repository for super-resolution using deep learning

    Full text link
    Deep learning-based image processing algorithms, including image super-resolution methods, have been proposed with significant improvement in performance in recent years. However, their implementations and evaluations are dispersed in terms of various deep learning frameworks and various evaluation criteria. In this paper, we propose an integrated repository for the super-resolution tasks, named SRZoo, to provide state-of-the-art super-resolution models in a single place. Our repository offers not only converted versions of existing pre-trained models, but also documentation and toolkits for converting other models. In addition, SRZoo provides platform-agnostic image reconstruction tools to obtain super-resolved images and evaluate the performance in place. It also brings the opportunity of extension to advanced image-based researches and other image processing models. The software, documentation, and pre-trained models are publicly available on GitHub.Comment: Accepted in ICASSP 2020, code available at https://github.com/idearibosome/srzo

    The Effect of Imbalanced Carrier Transport on the Efficiency Droop in GaInN-Based Blue and Green Light-Emitting Diodes

    Get PDF
    The effect of strongly-imbalanced carrier concentration and mobility on efficiency droop is studied by comparing the onset voltage of high injection, the onset current density of the droop, and the magnitude of the droop, as well as their temperature dependence, of GaInN-based blue and green light-emitting diodes (LEDs). An n-to-p asymmetry factor is defined as sigma(n)/sigma(p), and was found to be 17.1 for blue LEDs and 50.1 for green LEDs. Green LEDs, when compared to blue LEDs, were shown to enter the high-injection regime at a lower voltage, which is attributed to their less favorable p-type transport characteristics. Green LEDs, with lower hole concentration and mobility, have a lower onset current density of the efficiency droop and a higher magnitude of the efficiency droop when compared to blue LEDs. The experimental results are in quantitative agreement with the imbalanced carrier transport causing the efficiency droop, thus providing guidance for alleviating the phenomenon of efficiency droop.114sciescopu

    Enhanced overall efficiency of GaInN-based light-emitting diodes with reduced efficiency droop by Al-composition-graded AlGaN/GaN superlattice electron blocking layer

    Get PDF
    AlxGa1-xN/GaN superlattice electron blocking layers (EBLs) with gradually decreasing Al composition toward the p-type GaN layer are introduced to GaInN-based high-power light-emitting diodes (LEDs). GaInN/GaN multiple quantum well LEDs with 5- and 9-period Al-composition-graded AlxGa1-xN/GaN EBL show comparable operating voltage, higher efficiency as well as less efficiency droop than LEDs having conventional bulk AlGaN EBL, which is attributed to the superlattice doping effect, enhanced hole injection into the active region, and reduced potential drop in the EBL by grading Al compositions. Simulation results reveal a reduction in electron leakage for the superlattice EBL, in agreement with experimental results. (C) 2013 AIP Publishing LLC.open1133sciescopu
    corecore