4 research outputs found

    Febrile seizures, hyperthermia and hippocampal neuron physiology

    No full text
    Abstract not available

    Electroencephalographic Abnormalities are Common in COVID-19 and are Associated with Outcomes

    No full text
    Objective: The aim was to determine the prevalence and risk factors for electrographic seizures and other electroencephalographic (EEG) patterns in patients with Coronavirus disease 2019 (COVID-19) undergoing clinically indicated continuous electroencephalogram (cEEG) monitoring and to assess whether EEG findings are associated with outcomes. Methods: We identified 197 patients with COVID-19 referred for cEEG at 9 participating centers. Medical records and EEG reports were reviewed retrospectively to determine the incidence of and clinical risk factors for seizures and other epileptiform patterns. Multivariate Cox proportional hazards analysis assessed the relationship between EEG patterns and clinical outcomes. Results: Electrographic seizures were detected in 19 (9.6%) patients, including nonconvulsive status epilepticus (NCSE) in 11 (5.6%). Epileptiform abnormalities (either ictal or interictal) were present in 96 (48.7%). Preceding clinical seizures during hospitalization were associated with both electrographic seizures (36.4% in those with vs 8.1% in those without prior clinical seizures, odds ratio [OR] 6.51, p = 0.01) and NCSE (27.3% vs 4.3%, OR 8.34, p = 0.01). A pre-existing intracranial lesion on neuroimaging was associated with NCSE (14.3% vs 3.7%; OR 4.33, p = 0.02). In multivariate analysis of outcomes, electrographic seizures were an independent predictor of in-hospital mortality (hazard ratio [HR] 4.07 [1.44–11.51], p < 0.01). In competing risks analysis, hospital length of stay increased in the presence of NCSE (30 day proportion discharged with vs without NCSE: HR 0.21 [0.03–0.33] vs 0.43 [0.36–0.49]). Interpretation: This multicenter retrospective cohort study demonstrates that seizures and other epileptiform abnormalities are common in patients with COVID-19 undergoing clinically indicated cEEG and are associated with adverse clinical outcomes. ANN NEUROL 2021;89:872–883.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Deep active learning for Interictal Ictal Injury Continuum EEG patterns

    No full text
    Objectives: Seizures and seizure-like electroencephalography (EEG) patterns, collectively referred to as “ictal interictal injury continuum” (IIIC) patterns, are commonly encountered in critically ill patients. Automated detection is important for patient care and to enable research. However, training accurate detectors requires a large labeled dataset. Active Learning (AL) may help select informative examples to label, but the optimal AL approach remains unclear. Methods: We assembled >200,000 h of EEG from 1,454 hospitalized patients. From these, we collected 9,808 labeled and 120,000 unlabeled 10-second EEG segments. Labels included 6 IIIC patterns. In each AL iteration, a Dense-Net Convolutional Neural Network (CNN) learned vector representations for EEG segments using available labels, which were used to create a 2D embedding map. Nearest-neighbor label spreading within the embedding map was used to create additional pseudo-labeled data. A second Dense-Net was trained using real- and pseudo-labels. We evaluated several strategies for selecting candidate points for experts to label next. Finally, we compared two methods for class balancing within queries: standard balanced-based querying (SBBQ), and high confidence spread-based balanced querying (HCSBBQ). Results: Our results show: 1) Label spreading increased convergence speed for AL. 2) All query criteria produced similar results to random sampling. 3) HCSBBQ query balancing performed best. Using label spreading and HCSBBQ query balancing, we were able to train models approaching expert-level performance across all pattern categories after obtaining ∼7000 expert labels. Conclusion: Our results provide guidance regarding the use of AL to efficiently label large EEG datasets in critically ill patients.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Interrater Reliability of Expert Electroencephalographers Identifying Seizures and Rhythmic and Periodic Patterns in EEGs.

    No full text
    The validity of brain monitoring using electroencephalography (EEG), particularly to guide care in patients with acute or critical illness, requires that experts can reliably identify seizures and other potentially harmful rhythmic and periodic brain activity, collectively referred to as "ictal-interictal-injury continuum" (IIIC). Previous interrater reliability (IRR) studies are limited by small samples and selection bias. This study was conducted to assess the reliability of experts in identifying IIIC.info:eu-repo/semantics/publishe
    corecore