18 research outputs found

    Superhalogen Passivation for Efficient and Stable Perovskite Solar Cells

    Get PDF
    Metal-halide perovskites are optoelectronic materials applied to solar cells as a light absorber due to their excellent optoelectronic properties. The power conversion efficiency of perovskite solar cells (PSCs) reaches 25.7% certified, which stands in comparison with Si solar cells. Importantly, compositional engineering of perovskites has been one of the keys to the breakthrough. However, the presence of defects within perovskites is a matter of importance as it can cause nonradiative recombination of charge carriers. In addition, defect migration can degrade the photovoltaic performance and stability of PSCs. Previous studies have commonly addressed that iodide-related defects such as interstitial iodide and iodide vacancy are problematic due to their low formation energy. Thus, halide engineering is imperative to mitigate the defect-related dynamics and improve the materials quality of perovskites. In this sense, superhalogen is a promising candidate for defect passivation and stabilization of perovskites based on its higher electronegativity and electron affinity than halides, which are beneficial to the formation of a more robust interaction with adjacent elements in perovskites. This perspective gives an overview of studies regarding the use of superhalogen to develop efficient and stable PSCs and concludes with an outlook of further research directions

    Round-robin test on thermal conductivity measurement of ZnO nanofluids and comparison of experimental results with theoretical bounds

    Get PDF
    Ethylene glycol (EG)-based zinc oxide (ZnO) nanofluids containing no surfactant have been manufactured by one-step pulsed wire evaporation (PWE) method. Round-robin tests on thermal conductivity measurements of three samples of EG-based ZnO nanofluids have been conducted by five participating labs, four using accurate measurement apparatuses developed in house and one using a commercial device. The results have been compared with several theoretical bounds on the effective thermal conductivity of heterogeneous systems. This study convincingly demonstrates that the large enhancements in the thermal conductivities of EG-based ZnO nanofluids tested are beyond the lower and upper bounds calculated using the models of the Maxwell and Nan et al. with and without the interfacial thermal resistance

    Tumor Organoids for Primary Liver Cancers: A Systematic Review of Current Applications in Diagnostics, Disease Modeling, and Drug Screening

    Get PDF
    Background/AimsLiver cancer ranks third in cancer-related deaths globally, projected to exceed one millionannually by 2030. Existing therapies have significant limitations, including severe sideeffects and inconsistent efficacy. Innovative therapeutic approaches to address primary livercancer (PLC) have led to the ongoing development of tumor-derived organoids. These aresophisticated three-dimensional structures capable of mimicking native tissue architectureand function in vitro, improving our ability to model in vivo homeostasis and disease.MethodsThis systematic review consolidates known literature on human and mouse liver organoidsacross all PLC subtypes, emphasizing diagnostic precision, disease modeling, and drugscreening capabilities.ResultsAcross all 39 included studies, organoids were frequently patient derived organoids (PDO),closely followed by cancer cell line derived organoids (CCO). The literature concentrated onHepatocellular Carcinoma (HCC) and Intrahepatic Cholangiocarcinoma (ICC), whileexploration of other subtypes was limited. These studies demonstrate a valuable role for PLCorganoid cultures in biomarker discovery, disease modeling, and therapeutic exploration.ConclusionsEncouraging advancements such as organoid-on-a-chip and co-culturing systems presentpromising prospects in advancing treatment regimens for PLC. Standardizing in vitroprotocols is crucial to integrate research breakthroughs into practical treatment strategies forPLC.Impact and ImplicationsThis review underscores the expanding utility of PLC organoids across therapeutic discovery,diagnostics, and disease modeling. PDOs replicate many tumor characteristics. Novel genesfrom HCC organoids offer promising biomarkers for personalized treatments. Innovativemethodologies, like microfluidic chips, enhance organoid culture reproducibility. Despitelimitations, co-culturing, and organ-on-a-chip show potential in better mimicking the in vivo tumor microenvironment. These advancements position PLC organoids as crucial tools forpersonalized cancer therapy, biomarker discovery, and disease modeling, with ongoingprotocol standardization efforts essential for clinical applications.<br/

    Efficient Fault-Aware Routing for Wireless Sensor Networks

    Full text link

    Identification and Reconstruction of Impact Load for Lightweight Design of Production Equipment

    Full text link
    This paper proposes a method for determining externally applied impact loads on complex structures using strain analysis. An impact load transducer was developed to determine impact loads. Using this transducer (which incorporates strain gauges), the relationship between the measured strains and applied impact load was studied, and a model for conversion from strain analysis to impact load was developed. The reconstructed impact curve that characterizes the impact peak force, impact duration, and load in the steady state after impact was employed as an input load curve in finite element analysis. The reconstructed impact load was validated by comparing the structural strain measured on the specimen in the experiments and the strain calculated by the simulations. The results show that the maximum difference between experimentally and numerically determined structural peak strains is 3.2 με. Moreover, the method was validated by predicting the impact load of a descending vehicle chassis on the production equipment in an automotive production line. It demonstrated high efficiency and accuracy. The reconstructed load curve obtained using the developed method provides high efficiency in addition to high accuracy. Furthermore, it circumvents the complexities of modeling dynamic impact simulation, including complex impactor shape, interface, and friction conditions. Thus, the developed method provides scholars with an efficient approach for an extensive study of the responses of complex structures in various fields such as stress strain analysis, fatigue analysis, and topology optimization for lightweight design of production equipment

    Image and Vision Computing xxx (2008) xxx–xxx

    Full text link
    Available online at www.sciencedirect.co
    corecore