229,606 research outputs found
Improving Patient Flow Through Axiomatic Design of Hospital Emergency Departments
Organised by: Cranfield UniversityIn response to crowding in hospital emergency departments (ED), efforts have been made to increase patient flow through the Fast Track (FT). The use of FT, however, has not always been accompanied by an increase in the overall patient flow, sometimes leaving the FT underutilized. We find that this is mainly caused by the current practice of assigning patients to FT based only on the Emergency Severity Index. One index for two functional requirements results in a coupling between prioritizing of patients and encouraging the fast flow of them. By introducing a new index for patient flow, we could uncouple this design problem and significantly decrease the overall patient waiting time (~50%) compared to that of the existing use of FT.Mori Seiki – The Machine Tool Compan
Demonstration of dispersive rarefaction shocks in hollow elliptical cylinder chains
We report an experimental and numerical demonstration of dispersive
rarefaction shocks (DRS) in a 3D-printed soft chain of hollow elliptical
cylinders. We find that, in contrast to conventional nonlinear waves, these DRS
have their lower amplitude components travel faster, while the higher amplitude
ones propagate slower. This results in the backward-tilted shape of the front
of the wave (the rarefaction segment) and the breakage of wave tails into a
modulated waveform (the dispersive shock segment). Examining the DRS under
various impact conditions, we find the counter-intuitive feature that the
higher striker velocity causes the slower propagation of the DRS. These unique
features can be useful for mitigating impact controllably and efficiently
without relying on material damping or plasticity effects
- …