144,065 research outputs found

    Renormalization analysis of intermittency in two coupled maps

    Full text link
    The critical behavior for intermittency is studied in two coupled one-dimensional (1D) maps. We find two fixed maps of an approximate renormalization operator in the space of coupled maps. Each fixed map has a common relavant eigenvaule associated with the scaling of the control parameter of the uncoupled one-dimensional map. However, the relevant ``coupling eigenvalue'' associated with coupling perturbation varies depending on the fixed maps. These renormalization results are also confirmed for a linearly-coupled case.Comment: 11 pages, RevTeX, 2 eps figure

    Quaternion Electromagnetism and the Relation with 2-Spinor Formalism

    Full text link
    By using complex quaternion, which is the system of quaternion representation extended to complex numbers, we show that the laws of electromagnetism can be expressed much more simply and concisely. We also derive the quaternion representation of rotations and boosts from the spinor representation of Lorentz group. It is suggested that the imaginary 'i' should be attached to the spatial coordinates, and observe that the complex conjugate of quaternion representation is exactly equal to parity inversion of all physical quantities in the quaternion. We also show that using quaternion is directly linked to the two-spinor formalism. Finally, we discuss meanings of quaternion, octonion and sedenion in physics as n-fold rotationComment: Version published in journal Universe (2019

    Quantum Dynamics for de Sitter Radiation

    Full text link
    We revisit the Hamiltonian formalism for a massive scalar field and study the particle production in a de Sitter space. In the invariant-operator picture the time-dependent annihilation and creation operators are constructed in terms of a complex solution to the classical equation of motion for the field and the Gaussian wave function for each Fourier mode is found which is an exact solution to the Schr\"odinger equation. The in-out formalism is reformulated by the annihilation and creation operators and the Gaussian wave functions. The de Sitter radiation from the in-out formalism differs from the Gibbons-Hawking radiation in the planar coordinates, and we discuss the discrepancy of the particle production by the two methodComment: LaTex 12 pages, no figure; CosPA2011, Peking Univ., Oct. 28-31, 2011; references added; to be published in International Journal of Modern Physics: Conference Serie

    Steering effects on growth instability during step-flow growth of Cu on Cu(1,1,17)

    Full text link
    Kinetic Monte Carlo simulation in conjunction with molecular dynamics simulation is utilized to study the effect of the steered deposition on the growth of Cu on Cu(1,1,17). It is found that the deposition flux becomes inhomogeneous in step train direction and the inhomogeneity depends on the deposition angle, when the deposition is made along that direction. Steering effect is found to always increase the growth instability, with respect to the case of homogeneous deposition. Further, the growth instability depends on the deposition angle and direction, showing minimum at a certain deposition angle off-normal to (001) terrace, and shows a strong correlation with the inhomogeneous deposition flux. The increase of the growth instability is ascribed to the strengthened step Erlich Schwoebel barrier effects that is caused by the enhanced deposition flux near descending step edge due to the steering effect.Comment: 5 page

    Propagation of fluctuations in interaction networks governed by the law of mass action

    Full text link
    Using an example of physical interactions between proteins, we study how perturbations propagate in interconnected networks whose equilibrium state is governed by the law of mass action. We introduce a comprehensive matrix formalism which predicts the response of this equilibrium to small changes in total concentrations of individual molecules, and explain it using a heuristic analogy to a current flow in a network of resistors. Our main conclusion is that on average changes in free concentrations exponentially decay with the distance from the source of perturbation. We then study how this decay is influenced by such factors as the topology of a network, binding strength, and correlations between concentrations of neighboring nodes. An exact analytic expression for the decay constant is obtained for the case of uniform interactions on the Bethe lattice. Our general findings are illustrated using a real biological network of protein-protein interactions in baker's yeast with experimentally determined protein concentrations.Comment: 4 pages; 2 figure

    Production of the pentaquark Θ+\Theta^+ in npnp scattering

    Full text link
    We study npΛΘ+np\to \Lambda\Theta^{+} and npΣ0Θ+np\to \Sigma^{0}\Theta^{+} processes for both of the positive and negative parities of the Θ+\Theta^{+}. Employing the effective chiral Lagrangians for the KNYKNY and KNYK^*NY interactions, we calculate differential cross sections as well as total cross sections for the npΣ0Θ+np\to \Sigma^0 \Theta^+ and npΛΘ+np\to \Lambda\Theta^+ reactions. The total cross sections for the positive-parity Θ+\Theta^+ turn out to be approximately ten times larger than those for the negative parity Θ+\Theta^+ in the range of the CM energy sths3.5GeV\sqrt{s}_{\rm th}\le \sqrt{s}\le 3.5 {\rm GeV}. The results are rather sensitive to the mechanism of KK exchanges in the tt -- channel.Comment: 9 pages and 11 figure

    Electronic structures of layered perovskite Sr2MO4 (M=Ru, Rh, and Ir)

    Full text link
    We investigated the electronic structures of the two-dimensional layered perovskite Sr2_{2}\textit{M}O4_{4} (\textit{M}=4\textit{d} Ru, 4\textit{d} Rh, and 5\textit{d} Ir) using optical spectroscopy and polarization-dependent O 1\textit{s} x-ray absorption spectroscopy. While the ground states of the series of compounds are rather different, their optical conductivity spectra σ(ω)\sigma(\omega) exhibit similar interband transitions, indicative of the common electronic structures of the 4\textit{d} and 5\textit{d} layered oxides. The energy splittings between the two ege_{g} orbitals, i.e.i.e., d3z2r2d_{3z^{2}-r^{2}} and dx2y2d_{x^{2}-y^{2}}, are about 2 eV, which is much larger than those in the pseudocubic and 3\textit{d} layered perovskite oxides. The electronic properties of the Sr2_{2}\textit{M}O4_{4} compounds are discussed in terms of the crystal structure and the extended character of the 4\textit{d} and 5\textit{d} orbitals
    corecore