202 research outputs found

    UnionDet: Union-Level Detector Towards Real-Time Human-Object Interaction Detection

    Full text link
    Recent advances in deep neural networks have achieved significant progress in detecting individual objects from an image. However, object detection is not sufficient to fully understand a visual scene. Towards a deeper visual understanding, the interactions between objects, especially humans and objects are essential. Most prior works have obtained this information with a bottom-up approach, where the objects are first detected and the interactions are predicted sequentially by pairing the objects. This is a major bottleneck in HOI detection inference time. To tackle this problem, we propose UnionDet, a one-stage meta-architecture for HOI detection powered by a novel union-level detector that eliminates this additional inference stage by directly capturing the region of interaction. Our one-stage detector for human-object interaction shows a significant reduction in interaction prediction time 4x~14x while outperforming state-of-the-art methods on two public datasets: V-COCO and HICO-DET.Comment: ECCV 202

    Advancing Bayesian Optimization via Learning Correlated Latent Space

    Full text link
    Bayesian optimization is a powerful method for optimizing black-box functions with limited function evaluations. Recent works have shown that optimization in a latent space through deep generative models such as variational autoencoders leads to effective and efficient Bayesian optimization for structured or discrete data. However, as the optimization does not take place in the input space, it leads to an inherent gap that results in potentially suboptimal solutions. To alleviate the discrepancy, we propose Correlated latent space Bayesian Optimization (CoBO), which focuses on learning correlated latent spaces characterized by a strong correlation between the distances in the latent space and the distances within the objective function. Specifically, our method introduces Lipschitz regularization, loss weighting, and trust region recoordination to minimize the inherent gap around the promising areas. We demonstrate the effectiveness of our approach on several optimization tasks in discrete data, such as molecule design and arithmetic expression fitting, and achieve high performance within a small budget

    Self-positioning Point-based Transformer for Point Cloud Understanding

    Full text link
    Transformers have shown superior performance on various computer vision tasks with their capabilities to capture long-range dependencies. Despite the success, it is challenging to directly apply Transformers on point clouds due to their quadratic cost in the number of points. In this paper, we present a Self-Positioning point-based Transformer (SPoTr), which is designed to capture both local and global shape contexts with reduced complexity. Specifically, this architecture consists of local self-attention and self-positioning point-based global cross-attention. The self-positioning points, adaptively located based on the input shape, consider both spatial and semantic information with disentangled attention to improve expressive power. With the self-positioning points, we propose a novel global cross-attention mechanism for point clouds, which improves the scalability of global self-attention by allowing the attention module to compute attention weights with only a small set of self-positioning points. Experiments show the effectiveness of SPoTr on three point cloud tasks such as shape classification, part segmentation, and scene segmentation. In particular, our proposed model achieves an accuracy gain of 2.6% over the previous best models on shape classification with ScanObjectNN. We also provide qualitative analyses to demonstrate the interpretability of self-positioning points. The code of SPoTr is available at https://github.com/mlvlab/SPoTr.Comment: Accepted paper at CVPR 202

    NuTrea: Neural Tree Search for Context-guided Multi-hop KGQA

    Full text link
    Multi-hop Knowledge Graph Question Answering (KGQA) is a task that involves retrieving nodes from a knowledge graph (KG) to answer natural language questions. Recent GNN-based approaches formulate this task as a KG path searching problem, where messages are sequentially propagated from the seed node towards the answer nodes. However, these messages are past-oriented, and they do not consider the full KG context. To make matters worse, KG nodes often represent proper noun entities and are sometimes encrypted, being uninformative in selecting between paths. To address these problems, we propose Neural Tree Search (NuTrea), a tree search-based GNN model that incorporates the broader KG context. Our model adopts a message-passing scheme that probes the unreached subtree regions to boost the past-oriented embeddings. In addition, we introduce the Relation Frequency-Inverse Entity Frequency (RF-IEF) node embedding that considers the global KG context to better characterize ambiguous KG nodes. The general effectiveness of our approach is demonstrated through experiments on three major multi-hop KGQA benchmark datasets, and our extensive analyses further validate its expressiveness and robustness. Overall, NuTrea provides a powerful means to query the KG with complex natural language questions. Code is available at https://github.com/mlvlab/NuTrea.Comment: Neural Information Processing Systems (NeurIPS) 202
    • …
    corecore