4 research outputs found
Teleportation Systems Toward a Quantum Internet
Quantum teleportation is essential for many quantum information technologies, including long-distance quantum networks. Using fiber-coupled devices, including state-of-the-art low-noise superconducting nanowire single-photon detectors and off-the-shelf optics, we achieve conditional quantum teleportation of time-bin qubits at the telecommunication wavelength of 1536.5 nm. We measure teleportation fidelities of ≥90% that are consistent with an analytical model of our system, which includes realistic imperfections. To demonstrate the compatibility of our setup with deployed quantum networks, we teleport qubits over 22 km of single-mode fiber while transmitting qubits over an additional 22 km of fiber. Our systems, which are compatible with emerging solid-state quantum devices, provide a realistic foundation for a high-fidelity quantum Internet with practical devices
Teleportation Systems Toward a Quantum Internet
Quantum teleportation is essential for many quantum information technologies, including long-distance quantum networks. Using fiber-coupled devices, including state-of-the-art low-noise superconducting nanowire single-photon detectors and off-the-shelf optics, we achieve conditional quantum teleportation of time-bin qubits at the telecommunication wavelength of 1536.5 nm. We measure teleportation fidelities of ≥90% that are consistent with an analytical model of our system, which includes realistic imperfections. To demonstrate the compatibility of our setup with deployed quantum networks, we teleport qubits over 22 km of single-mode fiber while transmitting qubits over an additional 22 km of fiber. Our systems, which are compatible with emerging solid-state quantum devices, provide a realistic foundation for a high-fidelity quantum Internet with practical devices
Transparent, Conductive and Lightweight Superstrates for Perovskite Solar Cells and Modules
We have developed superstrates for perovskite solar cells that feature increased transparency and conductivity due to the incorporation of effectively transparent contacts (ETCs). They increase the short-circuit current density by more than 1 mA/cm2 compared to standard indium tin oxide (ITO) on glass superstrates. These ETC superstrates are composed of sodalime glass with a thin ( \sim 40 \mu \mathrm {m}) layer of polydimethylsiloxane (PDMS) that features triangular cross-section microscale grooves, which are infilled with a conductive silver ink and subsequently coated by a thin ( \sim 30 nm) ITO layer such that high lateral conductivity ( < 5 \Omega /sq) is achieved without altering the surface properties of standard perovskite superstrates