22 research outputs found

    Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is a lethal progressive neurological disorder affecting the memory. Recently, US Food and Drug Administration mitigated the standard for drug approval, allowing symptomatic drugs that only improve cognitive deficits to be allowed to accelerate on to clinical trials. Our study focuses on taurine, an endogenous amino acid found in high concentrations in humans. It has demonstrated neuroprotective properties against many forms of dementia. In this study, we assessed cognitively enhancing property of taurine in transgenic mouse model of AD. We orally administered taurine via drinking water to adult APP/PS1 transgenic mouse model for 6 weeks. Taurine treatment rescued cognitive deficits in APP/PS1 mice up to the age-matching wild-type mice in Y-maze and passive avoidance tests without modifying the behaviours of cognitively normal mice. In the cortex of APP/PS1 mice, taurine slightly decreased insoluble fraction of Aβ. While the exact mechanism of taurine in AD has not yet been ascertained, our results suggest that taurine can aid cognitive impairment and may inhibit Aβ-related damages.MIT International Science and Technology InitiativesKorea Health Industry Development Institute (H14C04660000)Korea Institute of Science and Technology (Open Research 2E24582)Korea Institute of Science and Technology (Flagship 2E25023

    Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. However, determining protein-coding genes for most new genomes is almost completely performed by inference using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function.</p> <p>Results</p> <p>We experimentally annotated the bacterial pathogen <it>Salmonella </it>Typhimurium 14028, using "shotgun" proteomics to accurately uncover the translational landscape and post-translational features. The data provide protein-level experimental validation for approximately half of the predicted protein-coding genes in <it>Salmonella </it>and suggest revisions to several genes that appear to have incorrectly assigned translational start sites, including a potential novel alternate start codon. Additionally, we uncovered 12 non-annotated genes missed by gene prediction programs, as well as evidence suggesting a role for one of these novel ORFs in <it>Salmonella </it>pathogenesis. We also characterized post-translational features in the <it>Salmonella </it>genome, including chemical modifications and proteolytic cleavages. We find that bacteria have a much larger and more complex repertoire of chemical modifications than previously thought including several novel modifications. Our <it>in vivo </it>proteolysis data identified more than 130 signal peptide and N-terminal methionine cleavage events critical for protein function.</p> <p>Conclusion</p> <p>This work highlights several ways in which application of proteomics data can improve the quality of genome annotations to facilitate novel biological insights and provides a comprehensive proteome map of <it>Salmonella </it>as a resource for systems analysis.</p

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study

    Get PDF
    Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    Nitride-organic semiconductor hybrid heterostructures for optoelectronic devices

    No full text
    We explore hybrid gallium nitride-organic semiconductors as composite layered thin film materials and report on initial results of fundamental studies of carrier transport across a junction composed of InGaN and selected organic thin films, with the eventual application goal towards versatile optoelectronic devices.close5

    Master transcription regulators and transcription factors regulate immune-associated differences between patients of African and European ancestry with colorectal cancer

    No full text
    BACKGROUND AND AIMS: Individuals of African (AFR) ancestry have a higher incidence of colorectal cancer (CRC) than those of European (EUR) ancestry and exhibit significant health disparities. Previous studies have noted differences in the tumor microenvironment between AFR and EUR patients with CRC. However, the molecular regulatory processes that underpin these immune differences remain largely unknown.  METHODS: Multiomics analysis was carried out for 55 AFR and 456 EUR patients with microsatellite-stable CRC using The Cancer Genome Atlas. We evaluated the tumor microenvironment by using gene expression and methylation data, transcription factor, and master transcriptional regulator analysis to identify the cell signaling pathways mediating the observed phenotypic differences. RESULTS: We demonstrate that downregulated genes in AFR patients with CRC showed enrichment for canonical pathways, including chemokine signaling. Moreover, evaluation of the tumor microenvironment showed that cytotoxic lymphocytes and neutrophil cell populations are significantly decreased in AFR compared with EUR patients, suggesting AFR patients have an attenuated immune response. We further demonstrate that molecules called “master transcriptional regulators” (MTRs) play a critical role in regulating the expression of genes impacting key immune processes through an intricate signal transduction network mediated by diseaseassociated transcription factors (TFs). Furthermore, a core set of these MTRs and TFs showed a positive correlation with levels of cytotoxic lymphocytes and neutrophils across both AFR and EUR patients with CRC, thus suggesting their role in driving the immune infiltrate differences between the two ancestral groups.  CONCLUSION: Our study provides an insight into the intricate regulatory landscape of MTRs and TFs that orchestrate the differences in the tumor microenvironment between patients with CRC of AFR and EUR ancestry.</p
    corecore