4,324 research outputs found
A Wireless Power Transfer Based Implantable ECG Monitoring Device
Implantable medical devices (IMDs) enable patients to monitor their health anytime and receive treatment anywhere. However, due to the limited capacity of a battery, their functionalities are restricted, and the devices may not achieve their intended potential fully. The most promising way to solve this limited capacity problem is wireless power transfer (WPT) technology. In this study, a WPT based implantable electrocardiogram (ECG) monitoring device that continuously records ECG data has been proposed, and its effectiveness is verified through an animal experiment using a rat model. Our proposed device is designed to be of size 24 x 27 x 8 mm, and it is small enough to be implanted in the rat. The device transmits data continuously using a low power Bluetooth Low Energy (BLE) communication technology. To charge the battery wirelessly, transmitting (Tx) and receiving (Rx) antennas were designed and fabricated. The animal experiment results clearly showed that our WPT system enables the device to monitor the ECG of a heart in various conditions continuously, while transmitting all ECG data in real-time.11Ysciescopu
Image quality and artifacts in automated breast ultrasonography
Three-dimensional automated breast ultrasonography (ABUS) has been approved for screening Epub ahead of print studies as an adjunct to mammography. ABUS provides proper orientation and documentation, resulting in better reproducibility. Optimal image quality is essential for a proper diagnosis, and high-quality images should be ensured when ABUS is used in clinical settings. Image quality in ABUS is highly dependent on the acquisition procedure. Artifacts can interfere with the visibility of abnormalities, reduce the overall image quality, and introduce clinical and technical problems. Nipple shadow and reverberation artifacts are some of the artifacts frequently encountered in ABUS. Radiologists should be familiar with proper image acquisition techniques and possible artifacts in order to acquire high-quality images
Acupuncture for Attenuating Frontal Lobe α Band Asymmetry Induced by Anger: : a pilot study
Peer reviewe
Investigation of Geant4 Simulation of Electron Backscattering
A test of Geant4 simulation of electron backscattering recently published in
this journal prompted further investigation into the causes of the observed
behaviour. An interplay between features of geometry and physics algorithms
implemented in Geant4 is found to significantly affect the accuracy of
backscattering simulation in some physics configurations
Validation Test of Geant4 Simulation of Electron Backscattering
Backscattering is a sensitive probe of the accuracy of electron scattering
algorithms implemented in Monte Carlo codes. The capability of the Geant4
toolkit to describe realistically the fraction of electrons backscattered from
a target volume is extensively and quantitatively evaluated in comparison with
experimental data retrieved from the literature. The validation test covers the
energy range between approximately 100 eV and 20 MeV, and concerns a wide set
of target elements. Multiple and single electron scattering models implemented
in Geant4, as well as preassembled selections of physics models distributed
within Geant4, are analyzed with statistical methods. The evaluations concern
Geant4 versions from 9.1 to 10.1. Significant evolutions are observed over the
range of Geant4 versions, not always in the direction of better compatibility
with experiment. Goodness-of-fit tests complemented by categorical analysis
tests identify a configuration based on Geant4 Urban multiple scattering model
in Geant4 version 9.1 and a configuration based on single Coulomb scattering in
Geant4 10.0 as the physics options best reproducing experimental data above a
few tens of keV. At lower energies only single scattering demonstrates some
capability to reproduce data down to a few keV. Recommended preassembled
physics configurations appear incapable of describing electron backscattering
compatible with experiment. With the support of statistical methods, a
correlation is established between the validation of Geant4-based simulation of
backscattering and of energy deposition
Quantitative Test of the Evolution of Geant4 Electron Backscattering Simulation
Evolutions of Geant4 code have affected the simulation of electron
backscattering with respect to previously published results. Their effects are
quantified by analyzing the compatibility of the simulated electron
backscattering fraction with a large collection of experimental data for a wide
set of physics configuration options available in Geant4. Special emphasis is
placed on two electron scattering implementations first released in Geant4
version 10.2: the Goudsmit-Saunderson multiple scattering model and a single
Coulomb scattering model based on Mott cross section calculation. The new
Goudsmit-Saunderson multiple scattering model appears to perform equally or
less accurately than the model implemented in previous Geant4 versions,
depending on the electron energy. The new Coulomb scattering model was flawed
from a physics point of view, but computationally fast in Geant4 version 10.2;
the physics correction released in Geant4 version 10.2p01 severely degrades its
computational performance. Evolutions in the Geant4 geometry domain have
addressed physics problems observed in electron backscattering simulation in
previous publications.Comment: To be published in IEEE Trans. Nucl. Sc
- …