49 research outputs found

    Two distinct red giant branch populations in the globular cluster NGC 2419 as tracers of a merger event in the Milky Way

    Full text link
    Recent spectroscopic observations of the outer halo globular cluster (GC) NGC 2419 show that it is unique among GCs, in terms of chemical abundance patterns, and some suggest that it was originated in the nucleus of a dwarf galaxy. Here we show, from the Subaru narrow-band photometry employing a calcium filter, that the red giant-branch (RGB) of this GC is split into two distinct subpopulations. Comparison with spectroscopy has confirmed that the redder RGB stars in the hkhk[=(Ca−b)−(b−y)-b)-(b-y)] index are enhanced in [Ca/H] by ∼\sim0.2 dex compared to the bluer RGB stars. Our population model further indicates that the calcium-rich second generation stars are also enhanced in helium abundance by a large amount (Δ\DeltaY = 0.19). Our photometry, together with the results for other massive GCs (e.g., ω\omega Cen, M22, and NGC 1851), suggests that the discrete distribution of RGB stars in the hkhk index might be a universal characteristic of this growing group of peculiar GCs. The planned narrow-band calcium photometry for the Local Group dwarf galaxies would help to establish an empirical connection between these GCs and the primordial building blocks in the hierarchical merging paradigm of galaxy formation.Comment: 4 pages, 4 figures, 1 table, accepted for the publication in ApJ

    Nonlinear Color-Metallicity Relations of Globular Clusters. III. On the Discrepancy in Metallicity between Globular Cluster Systems and their Parent Elliptical Galaxies

    Full text link
    One of the conundrums in extragalactic astronomy is the discrepancy in observed metallicity distribution functions (MDFs) between the two prime stellar components of early-type galaxies-globular clusters (GCs) and halo field stars. This is generally taken as evidence of highly decoupled evolutionary histories between GC systems and their parent galaxies. Here we show, however, that new developments in linking the observed GC colors to their intrinsic metallicities suggest nonlinear color-to-metallicity conversions, which translate observed color distributions into strongly-peaked, unimodal MDFs with broad metal-poor tails. Remarkably, the inferred GC MDFs are similar to the MDFs of resolved field stars in nearby elliptical galaxies and those produced by chemical evolution models of galaxies. The GC MDF shape, characterized by a sharp peak with a metal-poor tail, indicates a virtually continuous chemical enrichment with a relatively short timescale. The characteristic shape emerges across three orders of magnitude in the host galaxy mass, suggesting a universal process of chemical enrichment among various GC systems. Given that GCs are bluer than field stars within the same galaxy, it is plausible that the chemical enrichment processes of GCs ceased somewhat earlier than that of field stellar population, and if so, GCs preferentially trace the major, vigorous mode of star formation events in galactic formation. We further suggest a possible systematic age difference among GC systems, in that the GC systems in more luminous galaxies are older. This is consistent with the downsizing paradigm of galaxies and supports additionally the similar nature shared by GCs and field stars. Our findings suggest that GC systems and their parent galaxies have shared a more common origin than previously thought, and hence greatly simplify theories of galaxy formation.Comment: 55 pages, 7 figures, 5 tables; Accepted for publication in Ap

    The Presence of Two Distinct Red Giant Branches in the Globular Cluster NGC 1851

    Full text link
    There is a growing body of evidence for the presence of multiple stellar populations in some globular clusters, including NGC 1851. For most of these peculiar globular clusters, however, the evidence for the multiple red giant-branches (RGBs) having different heavy elemental abundances as observed in Omega Centauri is hitherto lacking, although spreads in some lighter elements are reported. It is therefore not clear whether they also share the suggested dwarf galaxy origin of Omega Cen or not. Here we show from the CTIO 4m UVI photometry of the globular cluster NGC 1851 that its RGB is clearly split into two in the U - I color. The two distinct RGB populations are also clearly separated in the abundance of heavy elements as traced by Calcium, suggesting that the type II supernovae enrichment is also responsible, in addition to the pollutions of lighter elements by intermediate mass asymptotic giant branch stars or fast-rotating massive stars. The RGB split, however, is not shown in the V - I color, as indicated by previous observations. Our stellar population models show that this and the presence of bimodal horizontal-branch distribution in NGC 1851 can be naturally reproduced if the metal-rich second generation stars are also enhanced in helium.Comment: 13 pages, 4 figures, accepted for publication in the Astrophysical Journal Letter
    corecore