40 research outputs found
Comparing the Effectiveness of the Monetary Policies in Korea and Japan
This study conducts a comparative analysis of the monetary policy transmission channels and their effects in Korea and Japan using a sign restriction VAR model to determine whether a Japanese-style monetary policy can be implemented in Korea. Results indicate considerable differences between Korea and Japan in their monetary policy transmission channels. Conventional monetary policy transmission channels, such as the exchange rate channel, asset price channel, and bank lending channel, works relatively well in Japan. However, in Korea, the interest rate channel is effective but has only a short-term effect on the exchange rate, and the effects on asset prices and bank lending are hard to expect in general. Furthermore, some potential risks working through the housing market may hinder financial stability. Korea and Japan see a limited effect on production in the real sector. These results imply that Korea must be careful about implementing a similar monetary policy as Japan
Hybrid cell constructs consisting of bioprinted cell‐spheroids
Abstract Bioprinted cell constructs have been investigated for regeneration of various tissues. However, poor cell–cell interactions have limited their utility. Although cell‐spheroids offer an alternative for efficient cell–cell interactions, they complicate bioprinting. Here, we introduce a new cell‐printing process, fabricating cell‐spheroids and cell‐loaded constructs together without preparation of cell‐spheroids in advance. Cells in mineral oil droplets self‐assembled to form cell‐spheroids due to the oil‐aqueous interaction, exhibiting similar biological functions to the conventionally prepared cell‐spheroids. By controlling printing parameters, spheroid diameter and location could be manipulated. To demonstrate the feasibility of this process, we fabricated hybrid cell constructs, consisting of endothelial cell‐spheroids and stem cells loaded decellularized extracellular matrix/β‐tricalcium phosphate struts for regenerating vascularized bone. The hybrid cell constructs exhibited strong angiogenic/osteogenic activities as a result of increased secretion of signaling molecules and synergistic crosstalk between the cells
Engineered 3D liver-tissue model with minispheroids formed by a bioprinting process supported with in situ electrical stimulation
Three-dimensional (3D) bioprinting, an effective technique for building cell-laden structures providing native extracellular matrix environments, presents challenges, including inadequate cellular interactions. To address these issues, cell spheroids offer a promising solution for improving their biological functions. Particularly, minispheroids with 50–100 μm diameters exhibit enhanced cellular maturation. We propose a one-step minispheroid-forming bioprinting process incorporating electrical stimulation (E-MS-printing). By stimulating the cells, minispheroids with controlled diameters were generated by manipulating the bioink viscosity and stimulation intensity. To validate its feasibility, E-MS-printing process was applied to fabricate an engineered liver model designed to mimic the hepatic lobule unit. E-MS-printing was employed to print the hepatocyte region, followed by bioprinting the central vein using a core-shell nozzle. The resulting constructs displayed native liver-mimetic structures containing minispheroids, which facilitated improved hepatic cell maturation, functional attributes, and vessel formation. Our results demonstrate a new potential 3D liver model that can replicate native liver tissues
Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering
In tissue engineering, biocompatible scaffolds are used as 3D cell niches to provide a similar environment to that of native tissue for seeded cells to regenerate the target tissue. When engineering bone tissue, high mechanical strength and calcium phosphate composition are essential factors to consider. In this study, we fabricated biocompatible composite scaffolds composed of synthetic polymers (polycaprolactone (PCL) and poly (vinyl alcohol) (PVA)), natural polymers (gelatin and collagen) and bioceramic (hydroxyapatite; HA) for bone tissue engineering. The synthetic polymers were used to enhance the mechanical properties of the composite scaffolds while the natural protein-based polymers were used to enhance various cellular activities, such as cell adhesion and proliferation. Meanwhile, the bioceramic was introduced to promote osteogenic differentiation. Composite scaffolds were evaluated for their physical characteristics, such as mechanical, swelling and protein absorbing properties as well as biological properties (cell proliferation, alkaline phosphatase (ALP) activities and calcium deposition) with human osteoblast-like cells (MG63). Consequently, incorporation of hydroxyapatite into the gelatin/PVA (C-GPH) scaffold showed 5-fold and 1.5-fold increase in calcium deposition and ALP activities, respectively compared to gelatin/PVA scaffold (C-GP). Moreover, compressive modulus also increased 1.8-fold. Integration of PCL core into gelatin/PVA/hydroxyapatite scaffold (C-PGPH) further amplified the compressive modulus 1.5-fold. In conclusion, the scaffold that is reinforced with HA particles and integrated with PCL core of the struts showed significant potential in field of bone tissue engineering
Cell-Electrospinning and Its Application for Tissue Engineering
Electrospinning has gained great interest in the field of regenerative medicine, due to its fabrication of a native extracellular matrix-mimicking environment. The micro/nanofibers generated through this process provide cell-friendly surroundings which promote cellular activities. Despite these benefits of electrospinning, a process was introduced to overcome the limitations of electrospinning. Cell-electrospinning is based on the basic process of electrospinning for producing viable cells encapsulated in the micro/nanofibers. In this review, the process of cell-electrospinning and the materials used in this process will be discussed. This review will also discuss the applications of cell-electrospun structures in tissue engineering. Finally, the advantages, limitations, and future perspectives will be discussed