13 research outputs found

    Overexpression of cathepsin S exacerbates lupus pathogenesis through upregulation TLR7 and IFN-α in transgenic mice

    Get PDF
    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organs. Recent studies suggest relevance between cysteine protease cathepsin S (CTSS) expression and SLE. To investigate the mechanism of CTSS in SLE, CTSS-overexpressing transgenic (TG) mice were generated, and induced lupus-like symptoms. Eight months later, the TG mice spontaneously developed typical SLE symptoms regardless of the inducement. Furthermore, we observed increased toll-like receptor 7 (TLR7) expression with increased monocyte and neutrophil populations in the TG mice. In conclusion, overexpression of CTSS in mice influences TLR7 expression, autoantibodies and IFN-α, which leads to an autoimmune reaction and exacerbates lupus-like symptoms. © 2021, The Author(s).1

    Microbiome of Saliva and Plaque in Children According to Age and Dental Caries Experience

    Get PDF
    Dental caries are one of the chronic diseases caused by organic acids made from oral microbes. However, there was a lack of knowledge about the oral microbiome of Korean children. The aim of this study was to analyze the metagenome data of the oral microbiome obtained from Korean children and to discover bacteria highly related to dental caries with machine learning models. Saliva and plaque samples from 120 Korean children aged below 12 years were collected. Bacterial composition was identified using Illumina HiSeq sequencing based on the V3-V4 hypervariable region of the 16S rRNA gene. Ten major genera accounted for approximately 70% of the samples on average, including Streptococcus, Neisseria, Corynebacterium, and Fusobacterium. Differential abundant analyses revealed that Scardovia wiggsiae and Leptotrichia wadei were enriched in the caries samples, while Neisseria oralis was abundant in the non-caries samples of children aged below 6 years. The caries and non-caries samples of children aged 6-12 years were enriched in Streptococcus mutans and Corynebacterium durum, respectively. The machine learning models based on these differentially enriched taxa showed accuracies of up to 83%. These results confirmed significant alterations in the oral microbiome according to dental caries and age, and these differences can be used as diagnostic biomarkers

    Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) is a clinically challenging malignant tumor worldwide. As a natural product and sesquiterpene lactone, Costunolide (CTD) has been reported to possess anticancer activities. However, the regulation mechanism and precise target of this substance remain undiscovered in CRC. In this study, we found that CTD inhibited CRC cell proliferation in vitro and in vivo by targeting AKT. METHODS: Effects of CTD on colon cancer cell growth in vitro were evaluated in cell proliferation assays, migration and invasion, propidium iodide, and annexin V-staining analyses. Targets of CTD were identified utilizing phosphoprotein-specific antibody array; Costunolide-sepharose conjugated bead pull-down analysis and knockdown techniques. We investigated the underlying mechanisms of CTD by ubiquitination, immunofluorescence staining, and western blot assays. Cell-derived tumour xenografts (CDX) in nude mice and immunohistochemistry were used to assess anti-tumour effects of CTD in vivo. RESULTS: CTD suppressed the proliferation, anchorage-independent colony growth and epithelial-mesenchymal transformation (EMT) of CRC cells including HCT-15, HCT-116 and DLD1. Besides, the CTD also triggered cell apoptosis and cell cycle arrest at the G2/M phase. The CTD activates and induces p53 stability by inhibiting MDM2 ubiquitination via the suppression of AKT's phosphorylation in vitro. The CTD suppresses cell growth in a p53-independent fashion manner; p53 activation may contribute to the anticancer activity of CTD via target AKT. Finally, the CTD decreased the volume of CDX tumors without of the body weight loss and reduced the expression of AKT-MDM2-p53 signaling pathway in xenograft tumors. CONCLUSIONS: Our project has uncovered the mechanism underlying the biological activity of CTD in colon cancer and confirmed the AKT is a directly target of CTD. All of which These results revealed that CTD might be a new AKT inhibitor in colon cancer treatment, and CTD is worthy of further exploration in preclinical and clinical trials.1

    Effects of Hydrogen-rich Water on Cariogenic Bacteria

    No full text
    Context: Some kinds of electrolysed water have been reported to exhibit antioxidant and bactericidal activity. However, studies on the effect of electrolysed hydrogen-rich water (EHW) with a neutral pH on cariogenic bacteria are limited. Aim: This study aimed to evaluate the feasibility of using EHW as a mouthwash by examining its various effects on cariogenic bacteria. Materials and Methods: To test the bactericidal and anti-biofilm formation effects of EHW on Streptococcus mutans and Streptococcus sobrinus, bacterial growth curves, colony-forming unit (CFU) counts, and crystal violet staining of biofilms were examined after exposing the bacterial pellets to EHW or tap water as a control for one minute. In addition, the expressions of glucosyltransferase and glucan-binding proteins encoding genes were examined using real-time PCR. Results: Bacterial growth and biofilm formation were inhibited, and the number of CFUs was significantly reduced in the EHW group compared to the control group. The expression of genes encoding glucosyltransferases (gtfB, gtfC, and gtfI) and glucan-binding proteins (gbpC and dblB) were also decreased in the EHW group compared to the control. Conclusions: Exposing cariogenic bacteria to EHW at neutral pH for one minute can effectively inhibit bacterial growth and biofilm formation in vitro, suggesting that EHW is a promising mouthwash

    Anticancer effects and potential mechanisms of ginsenoside Rh2 in various cancer types

    No full text
    Ginsenoside Rh2 (G-Rh2) is a natural bioactive product derived from Panax ginseng Meyer (P. ginseng). G-Rh2 exhibits anticancer activity in various human cancer cell lines both in vitro and in vivo by modulating several signaling pathways, such as those of PDZ-binding kinase/T-LAK cell-originated protein kinase, phosphatidylinositol 3-kinase, protein kinase B, mammalian target of rapamycin, epidermal growth factor receptor, p53, and reactive oxygen species. Moreover, G-Rh2 could effectively reverse drug resistance and enhance therapeutic effects in cancer therapy. This review summarizes the chemical properties, in vitro and in vivo anticancer activity, and underlying molecular mechanisms of G-Rh2 to facilitate cancer chemoprevention studies.1

    Costunolide Induces Apoptosis via the Reactive Oxygen Species and Protein Kinase B Pathway in Oral Cancer Cells

    No full text
    Oral cancer (OC) has been attracted research attention in recent years as result of its high morbidity and mortality. Costunolide (CTD) possesses potential anticancer and bioactive abilities that have been confirmed in several types of cancers. However, its effects on oral cancer remain unclear. This study investigated the potential anticancer ability and underlying mechanisms of CTD in OC in vivo and in vitro. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of CTD on OC cells; assessments for migration and invasion of OC cells were conducted by transwell; Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. The results revealed that CTD suppressed the proliferation, migration and invasion of oral cancer cells effectively and induced cell cycle arrest and apoptosis; regarding the mechanism, CTD bound to AKT directly by binding assay and repressed AKT activities through kinase assay, which thereby downregulating the downstream of AKT. Furthermore, CTD remarkably promotes the generation of reactive oxygen species by flow cytometry assay, leading to cell apoptosis. Notably, CTD strongly suppresses cell-derived xenograft OC tumor growth in an in vivo mouse model. In conclusion, our results suggested that costunolide might prevent progression of OC and promise to be a novel AKT inhibitor

    Rhein Suppresses Colorectal Cancer Cell Growth by Inhibiting the mTOR Pathway In Vitro and In Vivo

    No full text
    Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. Rhein has demonstrated therapeutic effects in various cancer models. However, its effects and underlying mechanisms of action in CRC remain poorly understood. We investigated the potential anticancer activity and underlying mechanisms of rhein in CRC in vitro and in vivo. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of rhein on CRC cells. Wound-healing and Transwell assays were conducted to assess cell migration and invasion capacity. Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. A tissue microarray was used to detect mTOR expression in CRC patient tissues. Gene overexpression and knockdown were done to analyze the function of mTOR in CRC. The anticancer effect of rhein in vivo was assessed in a CRC xenograft mouse model. The results show that rhein significantly inhibited CRC cell growth by inducing S-phase cell cycle arrest and apoptosis. Rhein inhibited CRC cell migration and invasion through the epithelial–mesenchymal transition (EMT) process. mTOR was highly expressed in CRC cancer tissues and cells. Overexpression of mTOR promoted cell growth, migration, and invasion, whereas mTOR knockdown diminished these phenomena in CRC cells in vitro. In addition, rhein directly targeted mTOR and inhibited the mTOR signaling pathway in CRC cells. Rhein promoted mTOR degradation through the ubiquitin-proteasome pathway. Intraperitoneal administration of rhein inhibited HCT116 xenograft tumor growth through the mTOR pathway. In conclusion, rhein exerts anticancer activity in vitro and in vivo by targeting mTOR and inhibiting the mTOR signaling pathway in CRC. Our results indicate that rhein is a potent anticancer agent that may be useful for the prevention and treatment of CRC

    20 (S)-ginsenoside Rh2 inhibits colorectal cancer cell growth by suppressing the Axl signaling pathway in vitro and in vivo

    No full text
    Background: Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from ginseng, which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo. Methods: Cell proliferation, migration, invasion, apoptosis, cell cycle, and western blot assays were performed to evaluate the effect of G-Rh2 on CRC cells. In vitro pull-down assay was used to verify the interaction between G-Rh2 and Axl. Transfection and infection experiments were used to explore the function of Axl in CRC cells. CRC xenograft models were used to further investigate the effect of Axl knockdown and G-Rh2 on tumor growth in vivo. Results: G-Rh2 significantly inhibited proliferation, migration, and invasion, and induced apoptosis and G0/G1 phase cell cycle arrest in CRC cell lines. G-Rh2 directly binds to Axl and inhibits the Axl signaling pathway in CRC cells. Knockdown of Axl suppressed the growth, migration and invasion ability of CRC cells in vitro and xenograft tumor growth in vivo, whereas overexpression of Axl promoted the growth, migration, and invasion ability of CRC cells. Moreover, G-Rh2 significantly suppressed CRC xenograft tumor growth by inhibiting Axl signaling with no obvious toxicity to nude mice. Conclusion: Our results indicate that G-Rh2 exerts anticancer activity in vitro and in vivo by suppressing the Axl signaling pathway. G-Rh2 is a promising candidate for CRC prevention and treatment. © 20211

    Rhein Suppresses Colorectal Cancer Cell Growth by Inhibiting the mTOR Pathway In Vitro and In Vivo

    No full text
    Simple Summary Colorectal cancer (CRC) is the fourth most common cancer and the second most common cause of cancer-related deaths globally. Rhein is a natural anthraquinone extract from rhubarb, which exhibits potent anticancer activity in various cancers. In this study, we show that rhein significantly inhibited the growth, migration, and invasion of CRC cells by directly binding to mTOR and inhibiting the mTOR signaling pathway. Rhein promotes mTOR degradation through the ubiquitin-proteasome pathway. In addition, rhein significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity. Our results indicate that rhein is a promising anticancer agent that may be useful for the prevention and treatment of CRC. Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. Rhein has demonstrated therapeutic effects in various cancer models. However, its effects and underlying mechanisms of action in CRC remain poorly understood. We investigated the potential anticancer activity and underlying mechanisms of rhein in CRC in vitro and in vivo. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of rhein on CRC cells. Wound-healing and Transwell assays were conducted to assess cell migration and invasion capacity. Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. A tissue microarray was used to detect mTOR expression in CRC patient tissues. Gene overexpression and knockdown were done to analyze the function of mTOR in CRC. The anticancer effect of rhein in vivo was assessed in a CRC xenograft mouse model. The results show that rhein significantly inhibited CRC cell growth by inducing S-phase cell cycle arrest and apoptosis. Rhein inhibited CRC cell migration and invasion through the epithelial-mesenchymal transition (EMT) process. mTOR was highly expressed in CRC cancer tissues and cells. Overexpression of mTOR promoted cell growth, migration, and invasion, whereas mTOR knockdown diminished these phenomena in CRC cells in vitro. In addition, rhein directly targeted mTOR and inhibited the mTOR signaling pathway in CRC cells. Rhein promoted mTOR degradation through the ubiquitin-proteasome pathway. Intraperitoneal administration of rhein inhibited HCT116 xenograft tumor growth through the mTOR pathway. In conclusion, rhein exerts anticancer activity in vitro and in vivo by targeting mTOR and inhibiting the mTOR signaling pathway in CRC. Our results indicate that rhein is a potent anticancer agent that may be useful for the prevention and treatment of CRC.1
    corecore