310 research outputs found

    In Vitro Chemosensitivity Using the Histoculture Drug Response Assay in Human Epithelial Ovarian Cancer

    Get PDF
    The choice of chemotherapeutic drugs to treat patients with epithelial ovarian cancer has not depended on individual patient characteristics. We have investigated the correlation between in vitro chemosensitivity, as determined by the histoculture drug response assay (HDRA), and clinical responses in epithelial ovarian cancer. Fresh tissue samples were obtained from 79 patients with epithelial ovarian cancer. The sensitivity of these samples to 11 chemotherapeutic agents was tested using the HDRA method according to established methods, and we analyzed the results retrospectively. HDRA showed that they were more chemosensitive to carboplatin, topotecan and belotecan, with inhibition rates of 49.2%, 44.7%, and 39.7%, respectively, than to cisplatin, the traditional drug of choice in epithelial ovarian cancer. Among the 37 patients with FIGO stage Ⅲ/Ⅳ serous adenocarcinoma who were receiving carboplatin combined with paclitaxel, those with carboplatin-sensitive samples on HDRA had a significantly longer median disease-free interval than patients with carboplatin- resistant samples (23.2 vs. 13.8 months, p<0.05), but median overall survival did not differ significantly (60.4 vs. 37.3 months, p=0.621). In conclusion, this study indicates that HDRA could provide useful information for designing individual treatment strategies in patients with epithelial ovarian cancer

    CropCat: Data Augmentation for Smoothing the Feature Distribution of EEG Signals

    Full text link
    Brain-computer interface (BCI) is a communication system between humans and computers reflecting human intention without using a physical control device. Since deep learning is robust in extracting features from data, research on decoding electroencephalograms by applying deep learning has progressed in the BCI domain. However, the application of deep learning in the BCI domain has issues with a lack of data and overconfidence. To solve these issues, we proposed a novel data augmentation method, CropCat. CropCat consists of two versions, CropCat-spatial and CropCat-temporal. We designed our method by concatenating the cropped data after cropping the data, which have different labels in spatial and temporal axes. In addition, we adjusted the label based on the ratio of cropped length. As a result, the generated data from our proposed method assisted in revising the ambiguous decision boundary into apparent caused by a lack of data. Due to the effectiveness of the proposed method, the performance of the four EEG signal decoding models is improved in two motor imagery public datasets compared to when the proposed method is not applied. Hence, we demonstrate that generated data by CropCat smooths the feature distribution of EEG signals when training the model.Comment: 4 pages, 1 tabl

    A Case of Lambert-Eaton Myasthenic Syndrome Associated with Atypical Bronchopulmonary Carcinoid Tumor

    Get PDF
    The Lambert-Eaton myasthenic syndrome (LEMS) is typically recognized as a paraneoplastic syndrome associated with a small cell lung carcinoma (SCLC), whereas LEMS with other neuroendocrine lung tumors, including carcinoids or large cell lung carcinoma, are highly unusual. Here, we report a rare case of LEMS with atypical bronchopulmonary carcinoid tumor: A 65-yr-old man presented with progressive leg weakness and a diagnosis of LEMS was made by serial repetitive nerve stimulation test. Chest CT revealed a lung nodule with enlargement of paratracheal lymph nodes, and surgically resected lesion showed pathological features of atypical carcinoid tumor. We concluded that LEMS could be associated with rare pulmonary neuroendocrine tumor other than SCLC, which necessitates pathologic confirmation followed by aggressive treatment for optimal management in these rare cases
    corecore