4 research outputs found

    Differential effects of dietary methionine isomers on broilers challenged with acute heat stress

    No full text
    In this study, we investigated the effect of methionine isomers (D- and L-methionine) on growth performance, blood metabolite levels, nutrient digestibility, intestinal morphology, and foot pad dermatitis in broilers challenged with acute heat stress. In total, 240 broilers were randomly allocated in a 2×2 factorial arrangement consisting of two dietary treatments (D- vs. L-methionine) and two thermal environmental conditions (thermo-neutral vs. acute heat stress). Methionine isomers were added to the diet as an ingredient according to the diet formulation. The broilers were exposed to acute heat stress at 33℃ for 5 h on day 14. The average daily gain and feed conversion ratio of birds fed L-methionine were higher than those fed D-methionine (P<0.05) from the time of hatching till 21 days. Induced acute heat stress impaired (P<0.05) the daily gain and feed intake of the broilers on day 21. Furthermore, the blood urea nitrogen levels of birds subjected to acute heat stress on days 14 and 21 were higher (P<0.05) than those of their counterparts. Longer villi (P<0.05) were observed in broilers fed L-methionine-supplemented diet than in those fed D-methionine-supplemented diet on day 14, irrespective of thermal environmental conditions. Heat stress reduced (P <0.01) nutrient digestibility of the broilers on days 14 and 21. Higher incidence and severity of foot pad dermatitis were observed (P<0.05) in broilers fed diet containing D-methionine than in those fed L-methionine-supplemented diet. In conclusion, L-methionine-supplemented diet improved growth performance, overcame growth depression, and reduced the incidence of foot pad dermatitis when broilers were exposed to acute heat stress in the starter period

    Differential Effects of Dietary Methionine Isomers on Broilers Challenged with Acute Heat Stress

    No full text
    In this study, we investigated the effect of methionine isomers (D- and L-methionine) on growth performance, blood metabolite levels, nutrient digestibility, intestinal morphology, and foot pad dermatitis in broilers challenged with acute heat stress. In total, 240 broilers were randomly allocated in a 2×2 factorial arrangement consisting of two dietary treatments (D- vs. L-methionine) and two thermal environmental conditions (thermo-neutral vs. acute heat stress). Methionine isomers were added to the diet as an ingredient according to the diet formulation. The broilers were exposed to acute heat stress at 33°C for 5 h on day 14. The average daily gain and feed conversion ratio of birds fed L-methionine were higher than those fed D-methionine (P<0.05) from the time of hatching till 21 days. Induced acute heat stress impaired (P<0.05) the daily gain and feed intake of the broilers on day 21. Furthermore, the blood urea nitrogen levels of birds subjected to acute heat stress on days 14 and 21 were higher (P<0.05) than those of their counterparts. Longer villi (P<0.05) were observed in broilers fed L-methionine-supplemented diet than in those fed D-methionine-supplemented diet on day 14, irrespective of thermal environmental conditions. Heat stress reduced (P<0.01) nutrient digestibility of the broilers on days 14 and 21. Higher incidence and severity of foot pad dermatitis were observed (P<0.05) in broilers fed diet containing D-methionine than in those fed L-methionine-supplemented diet. In conclusion, L-methionine-supplemented diet improved growth performance, overcame growth depression, and reduced the incidence of foot pad dermatitis when broilers were exposed to acute heat stress in the starter period

    Position Classification of the Endotracheal Tube with Automatic Segmentation of the Trachea and the Tube on Plain Chest Radiography Using Deep Convolutional Neural Network

    No full text
    Background: This study aimed to develop an algorithm for multilabel classification according to the distance from carina to endotracheal tube (ETT) tip (absence, shallow > 70 mm, 30 mm ≤ proper ≤ 70 mm, and deep position < 30 mm) with the application of automatic segmentation of the trachea and the ETT on chest radiographs using deep convolutional neural network (CNN). Methods: This study was a retrospective study using plain chest radiographs. We segmented the trachea and the ETT on images and labeled the classification of the ETT position. We proposed models for the classification of the ETT position using EfficientNet B0 with the application of automatic segmentation using Mask R-CNN and ResNet50. Primary outcomes were favorable performance for automatic segmentation and four-label classification through five-fold validation with segmented images and a test with non-segmented images. Results: Of 1985 images, 596 images were manually segmented and consisted of 298 absence, 97 shallow, 100 proper, and 101 deep images according to the ETT position. In five-fold validations with segmented images, Dice coefficients [mean (SD)] between segmented and predicted masks were 0.841 (0.063) for the trachea and 0.893 (0.078) for the ETT, and the accuracy for four-label classification was 0.945 (0.017). In the test for classification with 1389 non-segmented images, overall values were 0.922 for accuracy, 0.843 for precision, 0.843 for sensitivity, 0.922 for specificity, and 0.843 for F1-score. Conclusions: Automatic segmentation of the ETT and trachea images and classification of the ETT position using deep CNN with plain chest radiographs could achieve good performance and improve the physician’s performance in deciding the appropriateness of ETT depth
    corecore