5,990 research outputs found
Thermodynamic arrow of time of quantum projective measurements
We investigate a thermodynamic arrow associated with quantum projective
measurements in terms of the Jensen-Shannon divergence between the probability
distribution of energy change caused by the measurements and its time reversal
counterpart. Two physical quantities appear to govern the asymptotic values of
the time asymmetry. For an initial equilibrium ensemble prepared at a high
temperature, the energy fluctuations determine the convergence of the time
asymmetry approaching zero. At low temperatures, finite survival probability of
the ground state limits the time asymmetry to be less than . We
illustrate our results for a concrete system and discuss the fixed point of the
time asymmetry in the limit of infinitely repeated projections.Comment: 6 pages in two columns, 1 figure, to appear in EP
- …