11,647 research outputs found
Counterterms in Gravity in the Light-Front Formulation and a D=2 Conformal-like Symmetry in Gravity
In this paper we discuss gravity in the light-front formulation (light-cone
gauge) and show how possible counterterms arise. We find that Poincare
invariance is not enough to find the three-point counterterms uniquely.
Higher-spin fields can intrude and mimic three-point higher derivative gravity
terms. To select the correct term we have to use the remaining
reparametrization invariance that exists after the gauge choice. We finally
sketch how the corresponding programme for N=8 Supergravity should work.Comment: 26 pages, references added, published versio
Electrogenic transport and K(+) ion channel expression by the human endolymphatic sac epithelium.
The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K(+) channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K(+) channels in the electrogenic transport of human ES epithelium. The identified K(+) channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K(+) transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid
20 K superconductivity in heavily electron doped surface layer of FeSe bulk crystal
A superconducting transition temperature Tc as high as 100 K was recently
discovered in 1 monolayer (1ML) FeSe grown on SrTiO3 (STO). The discovery
immediately ignited efforts to identify the mechanism for the dramatically
enhanced Tc from its bulk value of 7 K. Currently, there are two main views on
the origin of the enhanced Tc; in the first view, the enhancement comes from an
interfacial effect while in the other it is from excess electrons with strong
correlation strength. The issue is controversial and there are evidences that
support each view. Finding the origin of the Tc enhancement could be the key to
achieving even higher Tc and to identifying the microscopic mechanism for the
superconductivity in iron-based materials. Here, we report the observation of
20 K superconductivity in the electron doped surface layer of FeSe. The
electronic state of the surface layer possesses all the key spectroscopic
aspects of the 1ML FeSe on STO. Without any interface effect, the surface layer
state is found to have a moderate Tc of 20 K with a smaller gap opening of 4
meV. Our results clearly show that excess electrons with strong correlation
strength alone cannot induce the maximum Tc, which in turn strongly suggests
need for an interfacial effect to reach the enhanced Tc found in 1ML FeSe/STO.Comment: 5 pages, 4 figure
Dynamics of tilt-based browsing on mobile devices
A tilt-controlled photo browsing method for small mobile devices is presented. The implementation uses continuous inputs from an accelerometer, and a multimodal (visual, audio and vibrotactile) display coupled with the states of this model. The model is based on a simple physical model, with its characteristics shaped to enhance usability. We show how the dynamics of the physical model can be shaped to make the handling qualities of the mobile device fit the browsing task. We implemented the proposed algorithm on Samsung MITs PDA with tri-axis accelerometer and a vibrotactile motor. The experiment used seven novice users browsing from 100 photos. We compare a tilt-based interaction method with a button-based browser and an iPod wheel. We discuss the usability performance and contrast this with subjective experience from the users. The iPod wheel has significantly poorer performance than button pushing or tilt interaction, despite its commercial popularity
Coarsening Dynamics of an Antiferromagnetic XY model on the Kagome Lattice: Breakdown of the Critical Dynamic Scaling
We find a breakdown of the critical dynamic scaling in the coarsening
dynamics of an antiferromagnetic {\em XY} model on the kagome lattice when the
system is quenched from disordered states into the Kosterlitz-Thouless ({\em
KT}) phases at low temperatures. There exist multiple growing length scales:
the length scales of the average separation between fractional vortices are
found to be {\em not} proportional to the length scales of the quasi-ordered
domains. They are instead related through a nontrivial power-law relation. The
length scale of the quasi-ordered domains (as determined from optimal collapse
of the correlation functions for the order parameter )
does not follow a simple power law growth but exhibits an anomalous growth with
time-dependent effective growth exponent. The breakdown of the critical dynamic
scaling is accompanied by unusual relaxation dynamics in the decay of
fractional () vortices, where the decay of the vortex numbers is
characterized by an exponential function of logarithmic powers in time.Comment: 13 pages, 26 figure
- …