4,254 research outputs found
Conductivity sum rule, implication for in-plane dynamics and c-axis response
Recently observed -axis optical sum rule violations indicate non-Fermi
liquid in-plane behavior. For coherent -axis coupling, the observed flat,
nearly frequency independent -axis conductivity implies
a large in-plane scattering rate around and therefore any
pseudogap that might form at low frequency in the normal state will be smeared.
On the other hand incoherent -axis coupling places no restriction on the
value of and gives a more consistent picture of the observed sum rule
violation which, we find in some cases, can be less than half.Comment: 3 figures. To appear in PR
Cell nuclei detection using globally optimal active contours with shape prior
Cell nuclei detection in fluorescent microscopic images is an important and time consuming task for a wide range of biological applications. Blur, clutter, bleed through and partial occlusion of nuclei make this a challenging task for automated detection of individual nuclei using image analysis. This paper proposes a novel and robust detection method based on the active contour framework. The method exploits prior knowledge of the nucleus shape in order to better detect individual nuclei. The method is formulated as the optimization of a convex energy function. The proposed method shows accurate detection results even for clusters of nuclei where state of the art methods fail
Cosmological implications of a light dilaton
Supersymmetric Peccei-Quinn symmetry and string theory predict a complex
scalar field comprising a dilaton and an axion. These fields are massless at
high energies, but it is known since long that the axion is stabilized in an
instanton dominated vacuum. Instantons and axions together also provide a
mechanism to stabilize a dilaton, thus accounting for a dilaton as a possible
cold dark matter component accompanying the axion. We briefly review the
prospects of this scenario and point out further implications.Comment: LaTeX, 9 pages incl. 1 figure, reference adde
Possible Supersymmetric Effects on Angular Distributions in Decays
We investigate the angular distributions of the rare B decay, , in general supersymmetric extensions of the standard
model. We consider the new physics contributions from the operators
in small invariant mass region of lepton pair. We show that the
azimuthal angle distribution of the decay can tell us the new physics effects
clearly from the behavior of the distribution, even if new physics does not
change the decay rate substantially from the standard model prediction
Evaluation of the low-lying energy levels of two- and three-electron configurations for multi-charged ions
Accurate QED evaluations of the one- and two-photon interelectron interaction
for low lying two- and three-electron configurations for ions with nuclear
charge numbers are performed. The three-photon interaction is
also partly taken into account. The Coulomb gauge is employed. The results are
compared with available experimental data and with different calculations. A
detailed investigation of the behaviour of the energy levels of the
configurations , near
the crossing points Z=64 and Z=92 is carried out. The crossing points are
important for the future experimental search for parity nonconserving (PNC)
effects in highly charged ions
Non-magnetic impurity scattering in a superconductor near a van Hove point: Zn versus Ni in the cuprates
We consider the effect of non-magnetic impurities in a
superconductor with \ef close to a van Hove singularity. It is shown that the
non-trivial density of states (DOS) allows for resonant scattering already at
intermediate potential strengths eV. The residual DOS at
\ef, and the \tc suppression rate are found to strongly depend on the carrier
concentration. Quantitative agreement with experiments on Zn and Ni doped
cuprates is obtained by adjusting a single parameter, .Comment: 4 pages uuencoded compressed Postscript (Minor changes
A Systematic Analysis of the Lepton Polarization Asymmetries in the Rare B Decay, B -> X_s\tau^+\tau^-
The most general model-independent analysis of the lepton polarization
asymmetries in the rare B decay, \Bstt, is presented. We present the
longitudinal, normal and transverse polarization asymmetries for the
and , and combinations of them, as functions of the Wilson coefficients
of twelve independent four-Fermi interactions, ten of them local and two
nonlocal. These procedures will tell us which type of operators contributes to
the process. And it will be very useful to pin down new physics systematically,
once we have the experimental data with high statistics and a deviation from
the Standard Model is found.Comment: 24 pages, 8 figures, LaTe
Measuring the elements of the optical density matrix
Most methods for experimentally reconstructing the quantum state of light
involve determining a quasiprobability distribution such as the Wigner
function. In this paper we present a scheme for measuring individual density
matrix elements in the photon number state representation. Remarkably, the
scheme is simple, involving two beam splitters and a reference field in a
coherent state.Comment: 6 pages and 1 figur
More on scattering of Chern-Simons vortices
I derive a general formalism for finding kinetic terms of the effective
Lagrangian for slowly moving Chern-Simons vortices. Deformations of fields
linear in velocities are taken into account. From the equations they must
satisfy I extract the kinetic term in the limit of coincident vortices. For
vortices passing one over the other there is locally the right-angle
scattering. The method is based on analysis of field equations instead of
action functional so it may be useful also for nonvariational equations in
nonrelativistic models of Condensed Matter Physics.Comment: discussion around Eq.(45) is generalised, one more condition for the
local right-angle scattering is adde
- âŠ