2 research outputs found

    In Situ Real-Time Quantification of Microbial Communities: Applications to Cold and Dry Volcanic Habitats

    Get PDF
    We report field tests of an instrument using multi-wavelength excitation and detection of fluorescence capable of detection and discrimination of viable cells, non-viable cells (not metabolically active but not decomposed), and spores in extreme arid environments where low microbial abundances are expected. These new results are presented for cold and dry volcanic habitats worldwide, e.g., the arid core of the Atacama Desert, Mt. Kilimanjaro glacier and Kibo area, Pali Aike caldera, and the western US volcanic and desert soils in Utah, Idaho, Nevada, and California. Our results are comparable to previous studies reported in the literature for the same environments. We find these extreme environments there have a base level of ∼103 - 104 cells/g. This is the lower limit of detectable life on terrestrial soils, as we did not observe any quantities less than this, even though the described instrumentation is capable of such measurements. Samples from more conventional environments show much higher microbial cell densities, ca. 108 cells/g or higher, with this same instrument. This base level of microbial life is nearly equal in all the measurements from the extreme environments both hot and cold, and is likely controlled primarily by the sparse nutrients rather than temperature

    In Situ Real-Time Quantification of Microbial Communities: Applications to Cold and Dry Volcanic Habitats

    Get PDF
    We report field tests of an instrument using multi-wavelength excitation and detection of fluorescence capable of detection and discrimination of viable cells, non-viable cells (not metabolically active but not decomposed), and spores in extreme arid environments where low microbial abundances are expected. These new results are presented for cold and dry volcanic habitats worldwide, e.g., the arid core of the Atacama Desert, Mt. Kilimanjaro glacier and Kibo area, Pali Aike caldera, and the western US volcanic and desert soils in Utah, Idaho, Nevada, and California. Our results are comparable to previous studies reported in the literature for the same environments. We find these extreme environments there have a base level of ∼103 - 104 cells/g. This is the lower limit of detectable life on terrestrial soils, as we did not observe any quantities less than this, even though the described instrumentation is capable of such measurements. Samples from more conventional environments show much higher microbial cell densities, ca. 108 cells/g or higher, with this same instrument. This base level of microbial life is nearly equal in all the measurements from the extreme environments both hot and cold, and is likely controlled primarily by the sparse nutrients rather than temperature
    corecore